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ABSTRACT

Training Automatic Speech Recognition (ASR) models under
federated learning (FL) settings has attracted a lot of attention
recently. However, the FL scenarios often presented in the
literature are artificial and fail to capture the complexity of
real FL systems. In this paper, we construct a challenging
and realistic ASR federated experimental setup consisting of
clients with heterogeneous data distributions using the French
and Italian sets of the CommonVoice dataset, a large hetero-
geneous dataset containing thousands of different speakers,
acoustic environments and noises. We present the first em-
pirical study on attention-based sequence-to-sequence End-
to-End (E2E) ASR model with three aggregation weighting
strategies – standard FedAvg, loss-based aggregation and a
novel word error rate (WER)-based aggregation, compared
in two realistic FL scenarios: cross-silo with 10 clients and
cross-device with 2K and 4K clients. Our analysis on E2E
ASR from heterogeneous and realistic federated acoustic
models provides the foundations for future research and de-
velopment of realistic FL-based ASR applications.

Index Terms— End-to-end ASR, federated learning

1. INTRODUCTION

Deep neural networks are now widely adopted in state-of-the-
art (SOTA) ASR systems [1]. This success mostly relies on
the centralised training paradigm where data needs first to be
gathered in one single dataset before it can be used for train-
ing [2, 3, 4]. Such approach has a few clear benefits includ-
ing fast training and, the ability to sample data in any pre-
ferred way due to the complete data visibility. However, re-
cent concerns around data privacy along with the proliferation
of both powerful mobile devices and low latency communi-
cation technologies (e.g. 5G), distributed training paradigms
such as FL begin to receive more attention.

In FL, training happens at the source and training data is
never sent to a centralised server. In a typical FL scenario
each participating client/device receives a copy of an initial
model and separately trains its model on its local data. This
process generates a set of weight updates that are then sent
to a server, where updates are aggregated. This process is

repeated for several rounds[5, 6, 7]. Being able to harvest in-
formation from thousands of mobile devices without having
to collect users’ data makes federated and on-device train-
ing of ASR systems a feasible and an attractive alternative to
traditional centralised training [6], whilst offering new oppor-
tunities to advance ASR quality and robustness given the un-
precedented amount of user data directly available on-device.
For example, such data could be leveraged to better adapt the
ASR model to the users’ usage, or improve the robustness of
models to realistic and low resources scenarios [7].

Despite the growing number of studies applying FL on
speech-related tasks [8, 9, 10, 11, 12], very few of these
have investigated its use for E2E ASR. Properly training
E2E ASR models in a realistic FL setting comes with nu-
merous challenges. First, it is notoriously complicated to
train a deep learning model with FL on non independent
and identically distributed data (non-IID) [7, 13, 14] and
on-device speech data is extremely non-IID by nature (e.g.
different acoustic environments, words being spoken, lan-
guages, microphones, amount of available speech, etc.). Sec-
ond, state-of-the-art E2E ASR models are computationally
intensive and potentially not suited for on-device training
phases of FL. Indeed, the latest ASR systems rely on large
Transformers [15, 16], Transducers [17, 18] or attention
sequence-to-sequence (Seq2Seq) models [19, 20] that pro-
cess high-dimensional acoustic features. Finally, E2E ASR
training is difficult and very sensitive during early stages
of optimisation due to the complexity of learning a proper
alignment between the latent speech representation and the
transcription. These three traits make it very difficult to train
ASR models completely from scratch [21, 22].

To the best of our knowledge, existing works on FL for
ASR typically approach these challenges by relinquishing
few constraints of the environmental protocol. This in turn
results in their experimental settings being still far away
from the conditions in which a FL ASR would need to func-
tion. In fact, many works[23, 10] are evaluated on unrealistic
datasets (w.r.t the FL scenario) such as LibriSpeech (LS) [24],
which only contains recordings from selected speakers read-
ing books in a controlled setting without background noise.
Authors in [11] introduce a client-based adaptive training of
a HMM-DNN based ASR system for cross-silo FL, a specific

ar
X

iv
:2

10
4.

14
29

7v
2 

 [
cs

.S
D

] 
 9

 J
ul

 2
02

1



setup which considers only a reduced number of clients with
large amounts of homogeneous data, thus simplifying the
complexity of real FL setups where data is non-IID. Then,
[10] propose a federated transfer learning platform with im-
proved performance using enhanced federated averaging and
hierarchical optimization for E2E ASR, alleviating the afore-
mentioned alignment issue but only evaluating it on LS.

In this work, we motivate the need to move away from
clean speech corpora for evaluating FL-based ASR systems.
We investigate FL models in a more realistic setting with the
French Common Voice (CV) dataset [25], which provides a
large, heterogeneous and uncontrolled set of speakers who
used their own devices to record a given set of sentences; nat-
urally fitting to FL with various users, acoustic conditions,
microphones and accents. We evaluate both a cross-silo and
a cross-device (i.e. large number of clients with few naturally
non-IID data) FL setups while training a SOTA E2E ASR
system. In particular, we compare three different weighting
strategies during models aggregation. Our contributions are:

1. Quantitatively compare LibriSpeech to Common Voice
towards a realistic FL setup to highlight the need for a
shift in the evaluation of FL-based ASR models.

2. Present the first study on attention-based Seq2Seq E2E
ASR model for FL scenarios. Our setup investigates
challenges previously overlooked by others, such as ex-
tremely heterogeneous recording conditions.

3. Evaluate both cross-silo and cross-device FL with up
to 4K clients on the naturally-partitioned and heteroge-
neous French and Italian subsets of Common Voice.

4. A first adapted aggregation strategy based on WER to
integrate the specificity of ASR to FL.

5. Release the source code using Flower [26] and Speech-
Brain [27] to facilitate replication and future research1.

2. END-TO-END SPEECH RECOGNIZER

The considered E2E ASR system relies on the wide spread
joint connectionist temporal classification (CTC) with at-
tention paradigm [19]. This method combines a Seq2Seq
attention-based model [28] with the CTC loss [29].

A typical ASR Seq2Seq model includes three modules: an
encoder, a decoder and an attention module. Given a speech
input sequence (i.e. speech signal or acoustic features) x =
[x1, ..., xTx

] with a length Tx, the encoder first converts it
into a hidden latent representation he = [he1, ..., h

e
Tx

]. Then
the decoder attends to the encoded representation he com-
bined with an attention context vector ct from the attention
module. This produces the different decoder hidden states
hd = [hd1, ..., h

d
Ty

], with Ty corresponding to the length of the
target sequence y. In a speech recognition scenario Tx > Ty .

1github.com/yan-gao-GY/Flower-SpeechBrain

The standard training procedure of the joint CTC-Attention
ASR pipeline is based on two different losses over a dataset
S. First, the CTC loss is derived with respect to the prediction
obtained from the encoder module of the Seq2Seq model:

LCTC = −
∑
S

log p(y|he), (1)

Second, the attention-based decoder is optimised following
the cross entropy (CE) loss:

LCE = −
∑
S

log p(y|hd). (2)

The losses are combined with a hyperparameter µ ∈ [0, 1] as:

L = µLCE + (1− µ)LCTC . (3)

In practice the CTC loss facilitates the early convergence
of the system due its monotonic behavior while the attentional
decoder needs to first figure out where to attend in the hidden
representation of the entire input sequence.

3. FEDERATED TRAINING OF ACOUSTIC MODELS

The process of training an E2E acoustic model using feder-
ated learning follows four steps: 1) Following [10], model
weights are initialised with a pre-training phase on a cen-
tralised dataset; 2) The centralised server samples K clients
from a pool of M clients and uploads to them the weights
of the model. 3) The clients train the model for tlocal lo-
cal epochs in parallel based on their local user data and send
back the new weights to the server. 4) The server aggregates
the weights and restart at step 2. This procedure is executed
for T rounds until the model converges on a dedicated valida-
tion set (e.g. local to each client or centralised).

3.1. Federated Optimisation

For each training round, each client k ∈ K, containing nk
audio samples, runs t ∈ [0, tlocal] iterations with learning rate
ηl to locally update the model based on Eq. 3,

w
(k)
t+1 = w

(k)
t − ηlg̃k, (4)

with wk the local model weights iof client k, and g̃k the
average gradient over local samples. After training for tlocal
local epochs in the global round T , the updated weights w(k)

T

of the client k are sent back to the server. Then, the local
gradient g(k)T is computed as:

g
(k)
T = w

(k)
T − wT−1. (5)

Then, the gradients from all clients are aggregated as follows:

∆T =

K∑
k=1

α
(k)
T g

(k)
T , (6)

github.com/yan-gao-GY/Flower-SpeechBrain


where α
(k)
T denotes different weighting strategies de-

scribed in Section 3.2. The updated global model weights wT

are computed with a server learning rate ηs according to:

wT = wT−1 − ηs∆T , (7)

During FL training, especially with heterogeneous data,
the global model may deviates away from the original task or
simply not converges [7, 13, 14], and therefore lead to per-
formance degradation. To alleviate this issue, and motivated
by [10], we propose an additional training iteration over a
small batch of held-out data on the server, after the standard
model update procedure with Eq.7.

3.2. Weighting Strategies

Federated Averaging (FedAvg) [5] is a popular [30, 31, 32,
8, 9, 23] aggregation strategy by which model updates from
each client are weighted by α(k)

T , the ratio of data samples in
each client over the total samples utilized in the round:

α
(k)
T =

nk∑K
k=1 nk

, (8)

In realistic FL settings with heterogeneous client data dis-
tribution, some clients may contain data that is skewed and
not representative of the global data distribution (e.g. audio
samples with different languages or multiple speakers). As
a result, the aggregated model might simply not converge if
such clients have proportionally more training samples than
others. For instance, in our experiments, all attempts to train
an ASR system from scratch failed due to this issue requir-
ing a prior pre-training phase of the acoustic model. Sec-
ond, clients containing low quality data would introduce un-
expected noise into the training process (e.g. extreme noise
in the background). Either scenario could lead to model de-
viation in the aggregation step, which can not be solved via
the standard FedAvg weighting method (Eq. 8). A poten-
tial solution, instead, is to use the averaged training loss as a
weighting coefficient, thus reflecting the quality of the locally
trained model. Intuitively, higher loss would indicate that the
global model struggles to learn from the client’s local data.
More precisely, we compute the weighting with the Softmax
distribution obtained from the training loss from Eq. 3. Eq. 8
is modified as follows:

α
(k)
T =

exp (−Lk)∑K
k=1 exp (−Lk)

. (9)

In the context of ASR, WER is commonly used as the
final evaluation metric for the model instead of the training
loss. We therefore propose a WER-based weighting strategy
for aggregation. This approach utilizes the values (1 − wer)
obtained on the validation set as weighting coefficients α(k)

T :

α
(k)
T =

exp (1− werk)∑K
k=1 exp (1− werk)

. (10)

In this way, we directly optimise the model towards the
relevant metric for speech recognition.

4. COMMON VOICE AS A REALISTIC FL SETUP

In this section we first present the Common Voice (CV)
dataset used for the FL experiments. Then, we quantita-
tively demonstrate that CV is a much more adapted corpus to
advance FL research than LibriSpeech (LS), motivating the
need for a shift in the standard evaluation process.

4.1. Common Voice dataset

Both the French and Italian subsets of CV dataset (version
6.1) [25] are considered. Utterances are obtained from vol-
unteers recording sentences all around the world, and in dif-
ferent languages, from smartphones, computers, tablets, etc.
The French set contains a total of 328K utterances (475 hours
in total) with diverse accents which were recorded by more
than 10K French-speaking participants. The train set consists
of 4212 speakers (425.5 hours of speech), while both vali-
dation and test sets contain around 24 hours of speech from
2415 and 4247 speakers respectively. The Italian set, on the
other hand, is relatively small, containing 89, 21 and 22 hours
of Italian training (748 speakers), validation (1219 speakers)
and test (3404 speakers) data.

4.2. Setup analysis and LibriSpeech comparison

We argue that CV is closer to natural federated learning con-
ditions than LS as much stronger variations are observed both
intra- and inter-clients. While CV is a crowd-sourced dataset
containing thousands of different acoustic conditions, micro-
phones and noises, LS is a heavily controlled studio-quality
corpus. The latter has been used by most research on FL ASR.
We compare both datasets at three levels:

Low-level signal features. The selected features should
be more descriptive of the background and recording con-
ditions than speaker identity, as this is investigated when
analysing clustering purity. Hence, we will consider: Loud-
ness as it is highly linked to the microphone and the recording
distance; the log of the Harmonicity to Noise Ratio (logHNR)
as a proxy indicator of background noise; Permutation En-
tropy (PE) as it has been successfully used for microphone
identification purposes[33].

The mean value of the signal feature is computed for ev-
ery utterance by averaging the per-frame values. Then, for
every client we compute the mean value and the standard
deviation per client. The former distribution describes the
inter-client variation while the latter describes the intra-client
one. For the three considered features, the standard deviation
of the mean value per client distribution is higher for Com-
mon Voice than for LibriSpeech, reaching 0.034, 11.466 and
0.053 for, respectively, Loudness, logHNR and Permutation
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Fig. 1: (Above) Strip plot of the permutation entropy mean values
per client in Librispeech and Common Voice. CV shows a heavy-
tailed distribution as a consequence of the bigger diversity of record-
ing settings. (Below) TSNE representation of embedded speech ut-
terances. The colors correspond to the true clients (i.e. speakers).
CV clients are clearly harder to separate than LS.

Entropy on CV compared to 0.017, 9.096 and 0.040 on LS.
Concerning the intra-client variation, the standard deviation
of the standard deviation per client distribution is also higher
for CV than for LS reaching 0.009, 2.69 and 0.014 against
0.007, 2.31 and 0.007 respectively for loudness, logHNR and
PE. It is also interesting to note the heavy tailed distribution
obtained with the Permutation Entropy for CV, as depicted
in Fig. 1. Indeed, the Kurtosis reaches 4.16 on CV versus
−0.13 for LS. In practice, this mean that many clients may be
outliers for CV, drastically impacting FL with conventional
aggregation mechanisms.

Blind Signal-to-Noise ratios. We further inspect the
noise difference between two datasets through computing a
blind Signal to Noise Ratio estimation. First, a 10th-order
LPC approximation is computed for every sample. Second,
the voiced chunks are detected using the Probabilistic YIN
algorithm for F0 estimation [34]. Finally, considering only
the voiced chunks that are simpler to approach with an LPC
estimate, the noise in the blind SNR estimation is defined as
the difference between the real signal and the LPC approxi-
mation. Following the trend observed with the signal features,
CV shows a higher standard deviation for the SNR mean val-
ues with σSnrCV = 18.47 compared to σSnrLS = 10.32 for
LS. Then, a bigger variation within recordings of the same
client is observed. Indeed, the standard deviation of the stan-
dard deviations obtained for each audio sample of the same

client is higher in CV than in LS, with 6.54 compared to 3.82.
This suggests a higher variability in the recording conditions
with respect to the same client. Common Voice speakers may
contribute from different places and devices.

Clustering purity. We compare the overlap of speak-
ers using pretrained speaker embeddings. For both datasets,
speaker embeddings are computed on each utterance using the
Tristounet model [35] open-sourced on pyannote.audio [36].
It is important to mention that Tristounet is not trained on
LS or CV or audio book data. These embeddings are then
clustered using the K-means algorithm with kmeans++ ini-
tialization with the number of centroids equal to the number
of clients. The purity of the clusters is defined as the propor-
tion of points that belong to the same client as the majority
of its computed cluster. Purity reaches 0.77 on LS and 0.62
on CV. Fig. 1 shows a TSNE representation of the utterance
embeddings, and highlights the clustering difficulties in CV.
This indicates that CV speakers are harder to separate using
speaker embeddings. This confirms the two prior experiments
using low-level audio features, as it suggests that varying sig-
nal features and recording conditions pollute the speech utter-
ance which leads to harder speaker identification.

The analysis provided in this section evidences the drastic
differences in corpora between LS and CV. The latter better
captures the complexity that FL systems would face when de-
ployed in the real world.

5. EXPERIMENTAL SETTINGS

This section first present the architecture of the E2E speech
recognizer. Then, it describes the experimental setup of the
FL environment alongside with key hyper-parameters.

5.1. E2E Speech Recognizer

The experiments are based on a Seq2Seq model trained with
the joint CTC-attention objective [19]. The encoder follows
the CRDNN architecture first described [27] (i.e. 2D CNN —
LSTM — DNN). The decoder is a location aware GRU with
a single hidden layer. The full set of parameters describing
the model are given in the GitHub repository. Models are
trained to predict sub-words units. No language model fu-
sion is performed to properly assess the impact of the train-
ing procedure on the acoustic models. Data is augmented in
the time-domain during training. The model has been imple-
mented within SpeechBrain [27] and is therefore extremely
easy to manipulate, customise and retrain.

5.2. Realistic Federated Learning

Based on the natural partitioning of the CV dataset we con-
duct two sets of experiments reflecting real usages of FL:

Cross-silo FL. In this scenario, clients are generally few,
with high availability during all rounds and, often have similar
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Fig. 2: Illustration of the sample distribution across the 2K-client
and 4K-client FL settings from the French Common Voice dataset.

data distribution for training [7]. Shared data is often indepen-
dent and identically distributed. Our implementation follows
that of [10], the dataset is split in 10 random partitions (i.e.
one per client) with no overlapping speakers each containing
roughly the same amount of speech data.

Cross-device FL. This setup often involves thousands of
clients having very different data distributions (non-IID), each
participating in just one or a few rounds [7]. Here, we define
two settings: First, we simulate a realistic scenario of single
speaker using their individual devices. To reproduce this, we
naturally divide the training sets based on users into 4095 and
649 partitions for French and Italian set, respectively. The
second scenario allocates two users per device (e.g as in per-
sonal assistants or smart cars). For CV French, this lowers the
number of clients to 2036. As depicted in Fig. 2, each setting
drastically change the distribution of low-resources clients.
The 4K setup offers a challenging scenario as most clients
only contain very few samples.

5.3. Federated Learning for ASR: a hybrid approach

Training E2E ASR models in a FL setting is challenging.
Jointly learning the alignment and the latent speech represen-
tation is a difficult task that commonly requires large datasets.
Therefore, and as we experienced during our analysis, it is
nearly impossible to train an E2E ASR model from scratch in
a realistic FL setup. Table 1 shows that all the tested existing
FL aggregation methods fail to converge without pre-training.
This is due to the fact that most of the clients only contain few
minutes of speech, resulting in an extremely noisy gradient to
learn the alignment from. To overcome this issue we first
pre-train the global model on half of the data samples. We
do this by partitioning the original dataset into a small subset
of speakers (with many samples) for centralised training (re-
ferred to subsequently as the warm-up dataset) and a much
larger subset of speakers (having fewer samples each) for the
FL experiment. For CV French, the small subset contains 117
speakers, leaving the remaining 4095 speakers for FL. Such
statistics are reduced down to 99 and 649 speakers for Italian.
We argue that this scenario remains realistic as, in practice,

10 50 100
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Fig. 3: Speech recognition performance when varying the number
of sampled clients per round for the 4K-client setting on French CV.

centralised data is often available and can therefore be used
to bootstrap the alignment.

The number of clients participating in each round influ-
ences the outcome of the experiments as well. To quantify this
variation, we propose to vary the selected number of clients
per roundK from 10 to 100 for all weighting strategies on the
4K set. Then, we simply fix K with respect to the best WER
obtained (i.e. 100) for the others setups. For the cross-silo
environment, all clients are selected every round (K = 10).

In addition to setting the number of global rounds for the
FL experiment, we must define as well the number of local
epoch (i.e. on each client). This, however, is a non-trivial
task [5]. In practice, we found that increasing the number
of local epochs leads to clients over-fitting their own local
data.Hence, clients are locally trained for only 5 epochs.

Depending on the available compute resources, training
concurrently a large number of clients might become chal-
lenging. While models may be trained with CPUs or mod-
est GPUs on real embedded hardware (e.g. RapsberryPi or
NVIDIA Jetson), our simulated FL setup allows us to run
these workloads on modern GPUs (e.g. Nvidia Tesla V100)
running multiple clients concurrently on a single GPU and
implemented with Flower [26] and SpeechBrain [27].

Models are finally evaluated both on a centralised test set
and at the client-level with a small ensemble of local sen-
tences. Indeed, for the French 4K setup, each client saves
10% (with a minimum of 2 samples) for testing purposes. To
be more specific, centralised speakers are new ones, while lo-
cal speakers have been seen at training time.

6. SPEECH RECOGNITION RESULTS

First, we compare the impact of selecting different numbers of
clientsK per round on the most challenging setup (4K clients
in French, Fig. 3). Conversely to the literature , higher values
of K tend to produce better WER. This is explained by the
heterogeneity of the CV dataset, for which extremely noisy
clients may perturb the averaging process with few clients per
round. Indeed, few clients remain at more than 100% of WER



Table 1: Speech recognition results on the centralised test sets of
French (Fr”) and Italian (“It”) CV dataset for different scenarios
and weighting strategies. “User-based” FL represents 4K clients
for French and 649 for Italian.

Training Scenario Fr WER (%) It WER (%)

All data (lower bound) 20.18 17.40
Centralised 1st half (warm-up) 25.26 25.90

2nd half (post warm-up) 20.94 24.86

10-clients FL
Cross-silo

FedAvg 21.26 20.97
Loss-based 21.10 20.86
WER-based 20.99 19.98

2K-clients FL
Cross-device

FedAvg 22.83 —
Loss-based 22.67 —
WER-based 22.42 —

User-based FL
Cross-device

FedAvg 23.24 24.32
Loss-based 23.16 24.23
WER-based 22.82 23.86

From scratch
FedAvg [5] 100+ 100+
FedProx [37], FedAdam [38] 100+ 100+

even after the full training. For the remaining of the experi-
ments, K will thus be fixed to 100.

Table 1 reports the results obtained across the different
training setups. We notice that training on the entire dataset
in a centralised way gives us the best WER with 20.18% and
17.40% for the French and Italian sets respectively, which is
comparable to the current best literature [27]. This lower-
bound is expected as the system has full visibility of the data
and can sample the inputs in an almost IID fashion. On the
other hand, when using only the warm-up dataset, we notice
the effect of having fewer data points for training as the WER
increases to 25.26% for the French set and 25.90% for the
Italian set. This is expected as well as the system has now
less data to learn from. This sheds some light on the inherent
lower-bound limitations of FL, limited to partial data obser-
vations in each round. The third centralised scenario trains
the warmed-up model on the 2nd half of data in an on-line
training fashion. This model provides a slightly lower WER
compared to all FL models in French set. However, we should
note that this is an unrealistic setting as training models in a
centralised way would void all the privacy guarantees that FL
offers. In particular, this model only gains 0.14% improve-
ment in Italian set compared with the warm-up model. This
indicates the difficulty of training model on the second half
data even in centralised fashion. The results on all FL set-
tings exceed centralised training thanks to the centralised fine-
tuning in between each round on the server side.

The effect of data visibility can indeed be seen in both
cross-silo and cross-device scenarios, which do not have uni-
form access to data. However, since this problem is less se-
vere in the former setup, with the correct choice of aggrega-
tion strategy we are still able to obtain a WER of 20.99% with
the French set, which is very close to the centralised lower
bound of 20.18%. The more challenging Italian set, on the
other hand, obtains 19.98% WER with a 2.58% difference to
the lower bound. As for the cross-device scenario, the effect
of non-IID data distribution among devices leads to its best

Fig. 4: Client test performance on the French set of Common Voice
for different weighting strategies. The average WER for warm-up
model, standard FedAvg, loss-based and WER-based aggregation
are 23.76%, 22.13%, 22.11% and 21.91%. Clients are sorted w.r.t
their WER. Clients with a WER higher than 100% are removed.

WER on French set being 22.43% and 22.82% in the 2K and
4K clients settings, even worse (23.86%) with the Italian set.
These values are larger than the worst cross-silo result, show-
ing the effects of the non-IID nature of the data partitioning.

Compared to different weighting strategies, WER-based
and loss-based methods obtain a better performance in all
settings, which indicates that weakening the effects of low-
quality clients can assist the aggregation process in feder-
ated training with heterogeneous data distribution. Herein, we
have two types of indicators reflecting the quality of clients.
The results in Tab. 1 show that WER-based strategy obtain
the lowest WER in both settings. This could be easily ex-
plained by the nature of the strategy which directly optimise
the model toward the relevant metric for speech recognition.

Client level test performance is another concern in realis-
tic FL. Fig. 4 shows the individual WER for each client on
French set. All FL methods obtain better performance than
the warm-up model (blue line), but the difference between the
three aggregation strategies becomes less significant. WER-
based method, however, obtains the best WER 21.91% when
calculating the average performance over all the clients. As
previously discussed, we can see that many clients still have
a WER higher than 50% and 500 of them even have a local
WER higher than 100%, clearly indicating the challenging
nature of the CV dataset for FL.

7. CONCLUSION

In this paper, we presented the first study for realistic FL
scenarios on attention-based Seq2Seq E2E ASR model with
three aggregation weighting strategies – standard FedAvg,
loss-based aggregation and a novel WER-based aggregation.
We quantitatively compared LibriSpeech and Common Voice
towards a realistic FL setup. All methods were evaluated with
cross-silo and cross-device FL on two languages. Our work
sets the foundations for future research of realistic FL ASR
applications with an open source environment.
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