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ABSTRACT

Recently, the stability of graph filters has been studied as one of the

key theoretical properties driving the highly successful graph con-

volutional neural networks (GCNs). The stability of a graph filter

characterizes the effect of topology perturbation on the output of a

graph filter, a fundamental building block for GCNs. Many existing

results have focused on the regime of small perturbation with a small

number of edge rewires. However, the number of edge rewires can

be large in many applications. To study the latter case, this work de-

parts from the previous analysis and proves a bound on the stability

of graph filter relying on the filter’s frequency response. Assuming

the graph filter is low pass, we show that the stability of the filter

depends on perturbation to the community structure. As an applica-

tion, we show that for stochastic block model graphs, the graph filter

distance converges to zero when the number of nodes approaches

infinity. Numerical simulations validate our findings.

Index Terms— stability of graph filter, low pass graph filter,

stochastic block model

1. INTRODUCTION

Nowadays, developing models for graph structured data is popular

across disciplines [1, 2] with the increased availability of data in do-

mains such as social networks and biological networks. One of the

main thrusts is to exploit the irregular relationships between data

samples through modeling the latter using graphs that encode ar-

bitrary pairwise relationships. Among others, graph convolutional

networks (GCNs) [3–5] are shown to be efficient in learning graph

structured data.

Despite the highly successful applications, there has been few

theoretical studies on “why GCNs are powerful models for graph

structured data?”. As GCNs are built on graph filters which replace

the classical convolution operation in convolutional neural networks,

one possible approach is to evaluate the efficacy of GCNs via ana-

lyzing the stability of graph filter [6]. Formally, we consider an orig-

inal graph and its perturbation such that we measure the maximum

change in the graph filter output in ℓ2 norm when subjected to a unit

norm excitation signal. The latter is also known as the graph filter

distance. The concept of stability is related to transferability which

studies the generalization property of a trained GCN when applied

on datasets with different distribution or embedded graph topology.

Among the existing attempts, [6] provided a comprehensive

study on the stability of graph filters utilizing an integral Lipschitz

property, while [7–10] have derived bounds surrounding the poly-

nomial graph filter models with normalized Laplacian matrices as

graph shift operator (GSO); also see [11–13]. As a common trail,
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many of the above works yielded an upper bound on the graph filter

distance as O(‖S − Ŝ‖2) which is proportional to the number of

edge rewires, where S, Ŝ are respectively the original and perturbed

graph Laplacian/adjacency matrices. As such, they reach the con-

clusion that the stability of graph filter holds in scenarios when only

a few edges are rewired in the event of graph perturbation. When

the graph perturbation involves a large number of edge rewiring, the

above bounds may become uninformative. This raises an interesting

question: what are the conditions for graph filter to be stable when

subjected to a large number of edge rewiring?

This work provides an affirmative answer to the above question.

Our intuition is that as long as the community structure of a graph

is stable upon graph perturbation, e.g., only the edges within the

same community are rewired, then the graph filter shall be stable

regardless of the number of edge rewires since the perturbed graph

has similar ‘shape’ as the original one. To confirm this intuition, we

depart from existing analysis which rely on properties of polynomial

graph filter. Instead, we treat the graph filter distance using analysis

in the graph frequency domain. Assuming that the graph filter is

low pass [14] such that the filter suppresses high graph frequency

components of its input, our analysis relates the stability of graph

filter to changes in community structure of graph topology. Finally,

we yield a graph distance bound that can be invariant to the number

of edge rewires in the graph perturbation. Our contributions are:

• We derive the first community structure dependent bound on

graph filter distance which accounts for the perturbation to the

graph topology in terms of community structure and the low pass

filtering capability of graph filter, see Theorem 1.

• Our bound is specialized to the class of graph perturbation gen-

erated from a homogeneous stochastic block model. When the

graph filter is sufficiently low pass, we show that the graph fil-

ter distance approaches zero as the number of nodes grows, see

Corollaries 1 and 2. We emphasize that our result is applicable to

unnormalized Laplacian as GSO, which is not covered by most

of the previous works on stability of graph filters.

Lastly, numerical simulations on synthetic and real graphs are pro-

vided to verify our findings.

Related Works. The community structure of a graph emerges when

the number of nodes is large. As such, our study is closely related to

works which study the convergence properties of graph filters with

very large graphs. For instance, [15] studied the generalization of

graph signal processing (GSP) [16] to graphons, [17, 18] analyzed

the stability of GCNs with an infinite number of nodes/data. We

remark that our Corollary 1 can be viewed as an extension of [18] to

the unnormalized Laplacian as GSO.

Notations. We use || · ||2 to denote spectral norm for matrices and

Euclidean norm for vectors. For a vector (resp. matrix) x (resp. X),

we use [x]i (resp. [X]ij ) to denote its ith (resp. (i, j)th) entry.

http://arxiv.org/abs/2110.07234v1


2. PRELIMINARIES

Graphs and Graph Signals. We consider undirected and connected

graphs G = (V, E), where V is set of n nodes and E is the edge set.

The graph G is endowed with a graph shift operator (GSO), which is

defined as a symmetric matrix S ∈ R
n×n such that [S]ij 6= 0 if and

only if i = j or (i, j) ∈ E [16]. We focus on two common GSOs:

unnormalized Laplacian, normalized Laplacian. Given the adja-

cency matrix A ∈ R
n×n and the degree matrix D = Diag(A1),

the unnormalized Laplacian is defined as LU = D − A and the

normalized Laplacian is defined as Lnorm = D−1/2LUD
−1/2. The

GSO S admits an eigendecomposition as S = VΛV⊤, where

V = (v1, ...,vn) ∈ R
n×n collects the orthonormal eigenvectors

and Λ = Diag(λ1, ..., λn) is a diagonal matrix of the eigenval-

ues. Throughout this paper, we order the eigenvalues such that

0 = λ1 < λ2 ≤ · · · ≤ λn.

The eigenvalues of S can be interpreted as the graph frequen-

cies with the smaller eigenvalues correspond to lower frequencies.

This can be understood with the graph total variation x⊤Sx/2 =∑
(i,j)∈E(xi − xj)

2 for the graph signal on G represented by x ∈
R

n. As v⊤
i Svi = λi, we observe that the eigenvector vi has higher

variations with respect to G as the frequency index i increases. We

define the graph Fourier transform (GFT) of x as x̂ = V⊤x such

that [x̂]i denotes the magnitude of the ith frequency component.

Low Pass Graph Filters. A graph filter H(S) ∈ R
n×n maps the

input signal x ∈ R
n to the output signal y = H(S)x ∈ R

n. Specif-

ically, we consider graph filter of the form:

H(S) =
∑T−1

t=0 htS
t. (1)

Note that T ∈ N is the filter’s order. Based on the eigende-

composition of GSO S = VΛV⊤, we define the frequency

responses as h(λ) :=
∑T−1

t=0 htλ
t and subsequently the graph

filter can be written as H(S) = Vh(Λ)V⊤, where h(Λ) =
Diag (h(λ1), ..., h(λn)). We note that the GFT of y can be written

as ŷ = h(Λ)x̂.

This study is concerned with H(·) that are low pass graph fil-

ters which retain the low frequency components of its input while

suppressing the high frequency components. We define this class of

graph filters of interest with respect to the frequency response func-

tion h(λ). Our definition is extended from [14] as follows:

Definition 1. The graph filter H(·) is said to be λ̄-low pass if

η =
(

min
λ∈[0,λ̄]

|h(λ)|
)−1

max
λ∈[λ̄,∞)

|h(λ)| < 1, (2)

where η < 1 is known as the low pass ratio for the graph filter.

The above definition requires the graph filter H(·) to have a cut-

off frequency at λ̄ such that any components with graph frequency

above λ̄ are attenuated by a factor of at least η < 1. Unlike [14], our

definition is applicable regardless of the GSO S used as it only con-

straints on the form of the graph filter function determined by the

filter coefficients {ht}T−1
t=0 . Lastly, the cutoff frequency λ̄ maybe

different depending on the graph size n to achieve a reasonable low

pass filtering performance.

Stability of Graph Filters. We consider a perturbation of G into Ĝ,

e.g., via edge rewiring, which results in the GSO Ŝ. Our goal is to

study the stability of H(S) via analyzing the amount of changes in

the filter’s output under perturbation. As inspired by [6], we measure

the stability of H(S) using the quantity:

DH(S, Ŝ) = sup
x∈Rn,x6=0

∥∥H(S)x−H(Ŝ)x
∥∥
2

||x||2
= ‖H(S) −H(Ŝ)‖2. (3)

We call the quantity DH(S, Ŝ) the graph filter distance between the

filters H(S) and H(Ŝ). Notice that (3) yields an upper bound to the

operator distance modulo permutation measure ‖ · ‖P defined in [6]

since we have ignored the ambiguity due to node permutations.

Stochastic Block Model. To derive stability properties of graph

filters under a large number of edge rewires, we concentrate on

the stochastic block models (SBMs) random graphs to develop in-

sights. Here, SBM(n, k,B,Z) [19] denotes a random graph model

with n nodes partitioned into k blocks, the membership matrix

Z ∈ {0, 1}n×k such that [Z]ij = 1 if and only if node i is in com-

munity j, and a connectivity matrix B = [bij ]1≤i,j≤k ∈ [0, 1]k×k ,

whose entries bij being the probability of edges between nodes

in block i and block j. Let G ∼ SBM(n, k,B,Z), its empiri-

cal adjacency matrix A satisfies E[A] = A = ZBZ⊤, which is

referred to as the population adjacency matrix. Lastly, we also con-

sider a special case of SBMs given by the planted partition model

PPM(n, k, an, bn) which has k equally sized blocks with n/k
nodes per block. The PPM is a special case of an SBM where the

connectivity matrix is given by B = anI+ bn11
T .

3. MAIN RESULTS

This section presents our main findings on the stability property of

low pass graph filters. We first present a bound on DH(S, Ŝ) which

explicitly considers the strength of low pass filtering and the struc-

tural difference between S, Ŝ. Let us introduce two assumptions for

simplifying the constants in our bound:

H1 (λ̄). There exists a constant Hmax such that

supλ∈[0,λ̄] |h(λ)| ≤ Hmax. (4)

H2 (λ̄). There exists a constant LH such that

|h(λ)− h(λ′)| ≤ LH |λ− λ′|, ∀ λ, λ′ ∈ [0, λ̄]. (5)

H1 assumes that the frequency response function of the graph filter

is bounded in the interval [0, λ̄]. Meanwhile, H2 imposes a Lips-

chitz continuity condition on the frequency response function. Note

that H2 is weaker than a uniform Lipschitz filter condition as we

only consider the graph frequencies up to λ ≤ λ̄, and when λ̄
is small, it can imply the integral Lipschitz condition in [6], i.e.,

supλ≥0 |λh′(λ)| ≤ C. An example satisfying Definition 1, H1, H2

is the exponential graph filter H(S) = e−σS, where σ > 0.

The following theorem bounds the graph filter distance DH(S, Ŝ).

For brevity, we denote Λk and Vk (resp. Λ̂k and V̂k) as the matri-

ces of smallest-k eigenvalues and eigenvectors of S (resp. Ŝ):

Theorem 1. Let H(·) be a λ̄-low pass filter with ratio η. Suppose

that H1(λ̄), H2(λ̄) hold, and the graph frequencies of the GSOs S, Ŝ

satisfy λk ≤ λ̄ ≤ λk+1 and λ̂k ≤ λ̄ ≤ λ̂k+1 for some 1 ≤ k ≤
n− 1. Then, the graph filter distance satisfies:

DH(S, Ŝ) ≤ 2Hmax η (6)

+ LH||Λk − Λ̂k||2 + 2Hmax||Vk − V̂k||2.

Proof. Using the triangular inequality, we observe that

DH(S, Ŝ) ≤ ‖Vkh(Λk)V
T
k − V̂kh(Λ̂k)V̂k‖2

+
∥∥∑n

i=k+1{h(λi)viv
⊤
i − h(λ̂i)v̂iv̂

⊤
i }

∥∥
2
. (7)

By H1(λ̄) and the property of λ̄-low pass graph filters as specified in

Definition 1, it is easy to derive that

maxi∈{k+1,...,n} max{|h(λi)|, |h(λ̂i)|} ≤ ηHmax. (8)



This bounds the second term in (7) as 2ηHmax where we have fur-

ther used ‖∑n
i=k+1 viv

⊤
i ‖2 ≤ 1. On the other hand, by H1(λ̄),

H2(λ̄), we can upper bound the first term in (7) as

||Vkh(Λk)V
⊤
k − V̂kh(Λ̂k)V̂

⊤
k ||2

≤ ||h(Λk)− h(Λ̂k)||2 + ||Vkh(Λ̂k)Vk − V̂kh(Λ̂k)V̂k||2
≤ LH‖Λk − Λ̂k‖2 + 2Hmax‖Vk − V̂k‖2 (9)

Combining (8), (9) yields the desired bound.

The condition which requires the cutoff frequency λ̄ to satisfy λk ≤
λ̄ ≤ λk+1 and λ̂k ≤ λ̄ ≤ λ̂k+1 impose a spectral gap requirement

on the eigenvalues of S, Ŝ where a common λ̄ separates the ‘low’

and ‘high’ frequencies of the two graphs. This condition can be

satisfied if the two graphs S, Ŝ are k-modular [20]. We remark that

H(S), H(Ŝ) are also k-low pass graph filter [14] in this case.

The graph filter distance bound (6) comprises of three terms.

The first depends on the low pass ratio η which relies on the graph

filter’s frequency response. The last two terms capture the similarity

in the graph structure by comparing the pairs Vk, V̂k and Λk, Λ̂k.

We expect the pairs ‖Vk−V̂k‖2 and ‖Λk−Λ̂k‖2 to be small when

S, Ŝ are similar in terms of their community structures.

Theorem 1 implies that with a low pass filter H(·) satisfying

η ≪ 1, the graph filter distance only depends on the difference be-

tween S, Ŝ in terms of their community structure. The distance will

be insensitive to the number of edge rewiring unlike in [6, 9]. Our

next endeavor is to showcase examples of graph perturbation where

the community structures are invariant, thereby applying Theorem 1

concludes that the graph filter is stable.

Edge Rewiring Scheme. We focus on a simple case based on

SBM by fixing the number of blocks k, the membership matrix Z

and connectivity matrix B. In this example, both the original graph

G and the perturbed graph Ĝ are generated from the SBM with the

same parameters such that G, Ĝ ∼ SBM(n, k,B,Z). The above

setting covers an edge rewiring scheme as follows:

1. Generate the original graph as G ∼ SBM(n, k,B,Z).
2. For each inter/intra-cluster block (i, j), (i) delete a portion of

pre ∈ [0, 1] edges uniformly, and (ii) add edges to the node pairs

without edges with probability [b−1
ij − (1 − pre)]

−1pre, selected

independently.

Notice that edge rewiring in the above only occurs for the edges

within the same inter/intra-cluster block. It can be shown that the

resultant perturbed graph satisfies Ĝ ∼ SBM(n, k,B,Z).

3.1. Stability with Unnormalized Laplacian as GSO

Our plan is to study the graph filter distance bound through borrow-

ing recent consistency result of SBMs when n → ∞. Notice that

works on the convergence of unnormalized Laplacian are scarce.

This may be due to the fact that unnormalized Laplacian does not

have good concentration due to the involved diagonal degree ma-

trix [21], [22]. Hence, we cannot use known perturbation bounds

such as Weyl’s inequality [23] and Davis-Kahan theorem [24] to de-

rive concentration of eigenvalues and eigenvectors. In the following,

we adopt the results from [21] and concentrate on a special case of

the SBM model given by a sparse PPM with k = 2 blocks such that

G ∼ PPM(n, 2, α log n/n, β log n/n), where α, β ∈ R
+.

We first observe the following high probability bounds on the

bottom-2 eigenvectors and eigenvalues:

Corollary 1. Let α, β ∈ R
+, consider PPM graphs as G, Ĝ ∼

PPM(n, 2, α log n/n, β log n/n). Denote their unnormalized

Laplacian as LU , L̂U . Moreover, Λ2 and V2 (resp. Λ̂2 and

V̂2) are the matrices of smallest-2 eigenvalues and eigenvectors of

LU (resp. L̂U ). Suppose that
√
α−√

β >
√
2, then with probability

at least 1− o(1), it holds

‖V2 − V̂2‖2 = o(1), ‖Λ2 − Λ̂2‖2 = O(log n/n), (10)

where o(1) → 0 as n → ∞.

The corollary is obtained by Theorem 8, Lemma 9 and Theorem 11

of [21] and the randomness is due to the generation of PPM graphs.

The condition
√
α−√

β >
√
2 is known as the spectral gap criterion

which is necessary to distinguish the blocks in PPM [25, Theorem

13]. We shall skip the proof in the interest of space.

To apply Theorem 1, we choose k = 2 as the PPM contains

2 blocks which results in a graph with 2 densely connected clus-

ters. We observe that for the unnormalized Laplacian of sparse

PPM graph, its non-zero eigenvalues grow with Θ(log n). Satis-

fying the spectral gap condition λ2 ≤ λ̄ ≤ λ3, λ̂2 ≤ λ̄ ≤ λ̂3

therefore requires the cutoff frequency λ̄ in Definition 1 to grow

with log n as well. To this end, if we consider the exponential

graph filter1 H(LU ) = e−σLU , we observe that the low pass ratio

η, the constants in H1(λ̄), H2(λ̄) are insensitive to the growth of

λ̄ = Θ(log n). Under the above premises, we have

DH(LU , L̂U ) ≤ 2ηHmax +Hmax o(1) + LH O(log n/n), (11)

with high probability. As such, the graph filter distance between

H(LU ) and H(L̂U ) is small when η ≪ 1 and n → ∞.

3.2. Stability with Normalized Laplacian as GSO

Similar to the previous subsection, our plan is to borrow the classical

consistency result on SBMs from [21] and show that the low pass

graph filter is stable as n → ∞. Let α, β ∈ R
+, we consider the

k-blocks sparse PPM with G ∼ PPM(n, k, α log n/n, β log n/n),
we observe the following high probability bound on the difference

between the original and perturbed normalized Laplacian:

Corollary 2. Let α, β ∈ R
+, consider PPM graphs as G, Ĝ ∼

PPM(n, k, α log n/n, β log n/n). Denote their normalized Lapla-

cian as Lnorm, L̂norm. With probability at least 1− o(1), it holds

‖Lnorm − L̂norm‖2 = O
(
1/

√
log n

)
. (12)

The above corollary is obtained from extending [21, Theorem 4],

which is based on [26]. In particular, in the PPM graphs considered,

we have minij Aij ≥ c0 log n/n such that the minimum degrees

of G, Ĝ are Ω(log n). We skip the proof in the interest of space.

Notice that compared to the previous case with unnormalized Lapla-

cian matrices, we obtained a stronger concentration with respect to

the normalized Laplacian matrices themselves.

To apply Theorem 1, using the Weyl’s inequality and Davis-

Kahan theorem one can show that ‖Vk − V̂k‖2 = O(1/
√
log n),

‖Λk − Λ̂k‖2 = O(1/
√
log n) for the bottom-k eigenvectors and

eigenvalues. Furthermore, if we consider the special case of k = 2
blocks PPM graphs, then λ2(Lnorm) will be approximately 2β/(α+
β) while λ3(Lnorm) is at least 1 −O(1/

√
log n) [21, Theorem 10].

With the spectral gap condition
√
α −

√
β >

√
2 and let β ≤ 1 for

simplicity, as long as the graph filter H(·) satisfies Definition 1 with

a constant cutoff frequency λ̄ ≈ 1/2, we obtain:

1In fact, this holds even for the filter H(LU ) = e−σLU/ log n.



Table 1: Graph filter settings for synthetic experiments

Unnormalized Laplacian Normalized Laplacian

HLP(·) exp(−(1/ log n)LU ) exp(−Lnorm)
HHP(·) exp((1/ log n)LU ) exp(Lnorm)
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(a) Unnormalized Laplacian LU as GSO.
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(b) Normalized Laplacian Lnorm as GSO.

Fig. 1: Comparing the average graph filter distance DH(S, Ŝ)
against the number of nodes n. (Left) High pass filter HHP(·) (Right)

Low pass filter HLP(·). The vertical bars indicate 95% confidence

intervals of the graph filter distance.

DH(Lnorm, L̂norm) ≤ 2ηHmax + (Hmax + LH)O
(
1/

√
log n

)
,

(13)
with high probability. In other words, the graph filter distance be-

tween H(Lnorm), H(L̂norm) is small when η ≪ 1 and n → ∞.

Remark 1. One may apply [10, Proposition 1] to yield

DH(Lnorm, L̂norm) ≤
∑T−1

t=0 t 2t−1 |ht| ‖Lnorm − L̂norm‖2, (14)

where we have used ‖Lnorm‖2 ≤ 2. Therefore, we observe that

when T < ∞, (14) also yields the stability property for the graph

filter as n → ∞, without using the low pass condition on H(·).
In comparison, our result allows the filter order T to be infinite.

Note [10] also considered a special case with H(L) = (I+αL)−1.

4. NUMERICAL EXPERIMENTS

Synthetic Experiment. We compare the graph filter distances

DH(S, Ŝ) [cf. (3)] under different configurations of graph filters and

GSOs, as summarized in Table 1. Notice that in addition to the low

pass graph filters HLP(S) which satisfy Definition 1, as a control

experiment we also consider high pass graph filters HHP(S). The

latter aims to illustrate if the low pass property is necessary for the

stability of graph filter in both situation.

To simulate the edge rewiring graph perturbations, we gener-

ate the original graphs G from a k = 2 blocks PPM with G ∼
PPM(n, 2, 13 log n/n, 2 log n/n) with n ∈ [200, 2000]. An intra-

block edge is assigned with probability 15 log n/n while an inter-

block edge is assigned with probability 2 log n/n. The perturbed

graph is generated from G by the edge rewiring process in Section 3.
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exp(LU/ log n)
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Rewiring ratio pre

exp(0.1LU/ log n)

exp(−0.1LU/ log n)

Fig. 2: Comparing the averaged graph filter distance DH(LU , L̂U )
against rewiring ratio pre over 100 trials for different graph filters

on the email-Eu-core dataset. Note that the red (resp. green)

curves correspond to low pass (resp. high pass) graph filters.

We perform Monte-Carlo simulations with 100 trials to estimate

E[DH(S, Ŝ)] under the random graph model and its perturbations.

The simulation results can be found in Fig. 1. In the figure,

we compare the averaged graph filter distance for the four settings

in Table 1. Particularly, we consider three rewiring ratios pre ∈
{0.1, 0.5, 0.9} and make the following observations in order. In the

case when unnormalized Laplacian is taken as the GSO, we observe

that the low pass graph filters stabilize with DHLP
(LU , L̂U ) → 0

as n → ∞; in contrast, the high pass graph filters become unsta-

ble as the graph filter distance increases rapidly with n, note that

DHHP
(LU , L̂U ) ≈ 105. In the case when normalized Laplacian is

taken as the GSO, both low pass and high pass graph filters stabilize

as n → ∞. As observed, the convergence rate of graph filter dis-

tance with low pass filters is slightly faster than the high pass filters.

The above results agree with Section 3 as the low pass graph

filters stabilize as n → ∞. Moreover, our observations seem to

suggest that stability with large number of rewires does not hold

for high pass filter with LU as GSO. On the other hand, for high

pass graph filters with Lnorm, we suspect that the convergence of

DHHP
(Lnorm, L̂norm) is due to the discussions in (14), where the facts

‖Lnorm‖2 ≤ 2 and ‖Lnorm − L̂norm‖2 → 0 suffice to ensure stability.

Real Data Experiment. Our last example considers the stabil-

ity of graph filters on real graph topology. We consider G as the

email-Eu-core network [27]. The latter is an email network

containing 1, 005 nodes with 25, 571 edges and 42 communities

representing the departmental membership of researchers. To test

the stability of a graph filter defined on G, we perform a simplified

edge rewiring process: for each inter and intra-cluster block, (i) we

delete a portion pre ∈ [0, 1] of edges selected uniformly at random,

then (ii) we add back the same number of edges into the respective

block, again selected uniformly at random.

Fig. 2 shows the graph filter distance against the rewiring ratio

pre for two pairs of low pass and high pass graph filters with unnor-

malized Laplacians as GSO. In both cases, we observe that low pass

filters are stable over the considered range of rewiring ratios. Espe-

cially with a set of ‘weaker’ low/high pass filter [cf. right panel with

H(LU ) = exp(±0.1LU/ log n)], we observe that DH(LU , L̂U ) in-

creases at slower rate for the low pass filter.

Conclusions. We study the stability of low pass graph filters when

subjected to a large number of edge rewires. We propose a new sta-

bility bound given with respect to the frequency response of filters.

Our bound shows that the stability property for low pass graph filters

hinges on whether there are changes to the community structure in

the perturbation. Numerical experiments validate our theories.
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