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ABSTRACT

Many speech applications require understanding aspects beyond the
words being spoken, such as recognizing emotion, detecting whether
the speaker is wearing a mask, or distinguishing real from synthetic
speech. In this work, we introduce a new state-of-the-art paralin-
guistic representation derived from large-scale, fully self-supervised
training of a 600M+ parameter Conformer-based architecture. We
benchmark on a diverse set of speech tasks and demonstrate that
simple linear classifiers trained on top of our time-averaged repre-
sentation outperform nearly all previous results, in some cases by
large margins. Our analyses of context-window size demonstrate
that, surprisingly, 2 second context-windows achieve 96% the per-
formance of the Conformers that use the full long-term context on 7
out of 9 tasks. Furthermore, while the best per-task representations
are extracted internally in the network, stable performance across
several layers allows a single universal representation to reach near
optimal performance on all tasks.

Index Terms— speech, representation learning, self-supervised
learning, paralinguistics, transformer

1. INTRODUCTION

Powerful representations of data are useful in a number of ways.
They improve model performance on small datasets by transferring
data-driven insights from larger datasets. The models that create
representations can also be used as pre-training for improved per-
formance. If the model that generates the representation is non-
reversible, then the representations can unlock applications in some
privacy-sensitive scenarios. In this paper, we significantly improve
state-of-the-art representations for paralinguistic speech tasks.

There are a number of promising data-driven speech represen-
tations. Some directions include self-supervised contrastive learn-
ing [1, 2, 3], predictive coding [4, 5], masked-unit prediction [6],
multi-task learning [7], multimodal coincidence [8, 9], and inter-
mediate representations from a supervised task [10, 11]. One of
the most promising objectives for representation learning for speech
recognition was proposed in the recent Wav2Vec 2.0 [12] frame-
work, which combined Transformers [13] and a self-supervised con-
trastive learning objective [5]. The Wav2Vec 2.0 training objective
was subsequently combined with more powerful Conformer archi-
tectures, producing large improvements in semi-supervised speech
recognition applications [14, 15, 16]. This paper explores the use
of these Conformer-based models to define fixed representations for
non-ASR speech analysis and paralinguistics tasks. To fully eval-
uate the potential of these models, we evaluate several model sizes
and pretraining datasets combinations.

Recent work to establish a common benchmark has made it pos-
sible to directly compare speech representations [1, 17]. In this

work, we use the Non-Semantic Speech Benchmark (NOSS) [1],
a collection of publicly available non-semantic speech tasks includ-
ing speech emotion recognition, language identification, and speaker
identification. Following [18], we include masked speech detec-
tion [19]. We also include three new tasks: synthetic speech detec-
tion [20], an additional speech emotion recognition dataset [21], and
dysarthria classification [22]. Our work further establishes the use-
fulness of these embeddings over classical paralinguistic features,
and can be used to improve other transfer-learning speech applica-
tions like voice imitation [23] and personalized ASR [24].

Finally, our work explores the impact of context window size
on performance. We show that 2-second context windows are suf-
ficient for nearly all tasks, but further context truncation can lead
to large losses in performance. Furthermore, we analyzed the range
of embeddings produced by the sequence of Conformer blocks that
define the encoder, demonstrating stable performance over a large
portion of the network regardless of architecture complexity. Us-
ing Centered Kernel Alignment (CKA) analysis [25, 26], we further
demonstrate that the representations defined by this range of blocks
are surprisingly similar, both within and (to lesser degree) across ar-
chitectures.

The main contributions of this paper are:

1. Generate features for non-semantic speech tasks that set a new
state-of-the-art (SoTA) performance on 7 of 9 tasks using only
time-averaged features and linear classification models

2. Analyze the performance versus context window size tradeoff,
and show that 2-second context windows are sufficient

3. Perform a more extensive embedding comparison than previ-
ously done, both in terms of downstream tasks and embeddings
compared. Using a per-example analysis, we demonstrate that
our embedding is strictly better than previous ones

4. Demonstrate that similarly-performing representations in differ-
ent architectures are similar in the CKA-sense

2. CONFORMER-BASED REPRESENTATIONS

2.1. Architectures

Each of our proposed paralinguistic representations is defined using
a speech encoder comprised of a stack of convolution-augmented
Transformer blocks known as Conformers [14]. Each Conformer
block inserts a small depthwise separable convolutional module be-
tween the Transformer’s self-attention and MLP modules, which has
been shown to be highly beneficial to many recognition applica-
tions. The input to this speech encoder is the output of a 3-layer 1-
dimensional convolutional feature encoder that is applied to 80-bin
log mel spectrogram features. The spectrogams come from 16kHz
audio that is resampled if necessary. Two convolutional strides of
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Table 1: Comparison of models. Resnetish50 [10]. MobileNetv3 [27].
RNN-T [28]. EfficientNet [29]. Conformer [14]. AudioSet [30]. YT-U [16],
LL is Libri-Light [31]. ∗“RA” stands for “relative attention.”

Name Architecture Params Training
data

Labels
required

YAMNet [1] MobileNetv1 3.7M Audioset Y
TRILL [1] Resnetish50 24.5M Audioset N
FRILL [18] MobileNetv3 10.1M Audioset N
COLA [2] EfficientNetB0 4.0M Audioset N

ASR Emb [11] RNN-T 122M - Y

Conformer XL
(No) RA∗ YT (LL) Conformer 608M YT-U

(LL) N

Conformer XXL
YT (LL) Conformer 1.0B YT-U

(LL) N

Conformer G Conformer 8.0B YT-U N

two produce a vector time series that is downsampled by a factor
of 4x, yielding a frame rate that is preserved throughout the entire
speech encoder.

The models are trained using the Wav2Vec 2.0 contrastive
loss [12]: we first extract encoded features from the feature en-
coder and then use masked features as inputs to the Conformer to
create context vectors. These context vectors are trained to agree
with the target context vectors, obtained by applying a linear layer
to the initial encoded features, by a contrastive loss. Table 1 lists
the various Conformer architectures considered in our evaluation.
We consider three Conformer encoder complexities defined in the
original study [16], including 608 million (24 layers/8 heads/1024D
output), 1.0 billion (42 layers/8 heads/1024D output), and 8.0 billion
parameters (36 layers/16 heads/3072D output). Also shown are cor-
responding details for five baseline representations that we include
in our evaluation. These cover a range of model architectures, com-
plexities, and training objectives.

2.2. Pre-training Datasets

We use two datasets for self-supervised training of the above archi-
tectures. The first is YT-U, a 900k hour dataset [16] derived from
YouTube. YT-U is built by first randomly collecting 3 million hours
of audio from “speech-heavy” YouTube videos. The results are then
segmented, and the non-speech segments are removed to yield ap-
proximately 900k hours of unlabeled audio data.

The second is Libri-Light [31], which contains 60k hours of
audio derived from open-source audio books in the LibriVox project.
It is the largest publicly available, unlabeled semi-supervised dataset
to date.

3. EXPERIMENTS

3.1. Tasks: The Non-Semantic Speech Benchmark (NOSS)

In order to fairly compare representations, we benchmark each rep-
resentation on the same 9 tasks (Table 2). Our tasks include most
of the original NOSS benchmark tasks [1], a mask-detection task
used in representation benchmarking in [18], a fake speech detection
task [20], an additional speech emotion recognition task [21], and a
dysarthria classification task [22]. When a single scalar is necessary
(e.g. to compare embeddings), we aggregate over the performances
using the “Aggregate Embedding Score”, which is the average accu-
racy of a model, averaged across tasks.

ASVSpoof2019: We introduce the ASVSpoof2019 [20] dataset
as a new task in our benchmark. This task measures a model’s ability
to distinguish real from synthetic speech. We use the Logical Access

Table 2: Downstream evaluation datasets. ∗Results in our study used a subset
of Voxceleb filtered according to YouTube’s privacy guidelines.

Dataset Target Classes Samples Avg
length (s)

VoxCeleb∗ [32] Speaker ID 1,251 12,052 8.4
VoxForge [33] Language ID 6 176,438 5.8

Speech
Commands[34] Command 12 100,503 1.0

Masked
Speech [19] Mask wearing 2 36,554 1.0

ASVSpoof [20] Synthetic
or not 2 121,461 3.2

Euphonia [22] Dysarthria 5 15,224 6.4
CREMA-D [35] Emotion 6 7,438 2.5
IEMOCAP [21] Emotion 4 5,531 4.5

SAVEE [36] Emotion 7 480 3.8

(LA) portion of this dataset. The LA database contains bona fide
and spoofed speech generated using 17 different text-to-speech and
voice conversion systems. The task is especially challenging because
spoofed speech in the test set is generated using techniques not seen
in training.

IEMOCAP: The Interactive Emotional Dyadic Motion Capture
database [21] is an acted, multimodal, and multispeaker database.
We use the improvised scenarios portion with categorical emotion
labels. To compare fairly with previous SoTA work [17], we only
use the audio component and only 4 of the 10 labels (angry, happy,
neutral, and sad).

Euphonia: The Euphonia dataset [22] is a large dysarthric
speech dataset. Our task uses a 661 speaker subset of 29 identical
phrases with manual dysarthria labels from speech-language pathol-
ogists on their overall intelligibility using a five-point Likert scale.

3.2. Benchmark Results

For our first set of experiments, we compute embeddings from our
speech representation models (Table 1) and train simple models on
the NOSS tasks using the same methodology from [1]. For each pair
of benchmark task and embedding, we train and evaluate a number of
simple linear classification techniques (logistic regression, balanced
logistic regression, linear discriminant analysis) on top of clip-level
average embeddings. We choose the best performing classifier (as
determined on dev set) and use it to report test performance for that
(task, embedding) pair.

Table 3 shows the results of the benchmark. Like recent stud-
ies we report the performance of the best (model, layer) pair on a
per-task basis. However, we also aim to establish a single universal
set of features that serve all downstream tasks. Thus, we also eval-
uate all intermediate representations and rank order them according
to the Aggregate Embedding Quality on the dev set. We then report
performance on the test set in final line of Table 3. It comes from
layer 12/23 of the 600M parameter YT model, without relative at-
tention. We call this model “Conformer Applied to Paralinguistics,”
or “CAP”, and we refer to the best layer as “CAP12.” We note that
this representation was within 6% accuracy of the per-task best
layer on 7 of 9 tasks. Figure 1 shows how the aggregate embedding
quality varies in this model across intermediate layers.

Linear classifiers on Conformer representations set a new
SoTA on 7/9 tasks: The “best per-task” row in Table 3 shows the test
set results on the representations with the best dev-set performance.
Linear models on these representations set a new SoTA on 7 of the
tasks, often outperforming far more complex models. Furthermore,
these linear models outperform previous SoTA models that use
more modalities than just speech (CREMA, SAVEE).



Table 3: Test performance on the NOSS Benchmark and extended tasks. “Prev SoTA” are arbitrarily complicated models, but all other rows are linear
models on time-averaged input. †Filtered according to YouTube’s privacy guidelines. We omit previous SoTA results, since they used the entire dataset.
‡Task performance is reported using unweighted average recall [19] instead of accuracy. Also, test set labels are not available, so we report accuracy on the
eval set. ∗∗Uses equal error rate [20]. #The only non-public dataset. We exclude it from aggregate scores. ††Included in the table but not aggregate score,
since it’s less than 1/10th the size of the next smallest dataset and results have high variance. ∗Audio and visual features used in previous SoTA. +Prev SOTA
performed cross-fold validation. We hold out speakers M05 and F05 as test. ++YAMNet uses layer 10, as in [1]. §Best per-task results are computed by taking
the model/layer with the best results of the dev set, and reporting those results on the test set. If the dev set performance is better but the test results are worse,
“Best per-task” can be worse than “Best overall”.

Model Voxceleb1† Voxforge Speech
Commands

Masked
Speech‡

ASVSpoof
2019∗∗ Euphonia# CREMA-D IEMOCAP SAVEE††

Prev SoTA - 95.4 [37] 97.9 [38] 73.0 [39] 5.11 [17] 45.9 [11] 74.0∗ [40] 67.6+ [17] 84.0∗ [36]

Baselines
YAMNet++ [1] 10.9 79.8 78.5 59.7 9.23 43.0 66.4 57.5 69.2
TRILL [1] 12.6 84.5 77.6 65.2 7.46 48.1 65.7 54.3 65.0
FRILL [18] 13.8 78.8 74.4 67.2 7.45 46.6 71.3 57.6 63.3
COLA [2] 11.7 71.0 60.6 65.0 4.58 47.6 69.3 63.9 59.2
ASR Emb [11] 5.2 98.9 96.1 54.4 11.2 54.5 71.8 65.4 85.0

Conformers
Best per-task§ 53.5 99.8 97.5 74.2 2.5 53.6 87.2 79.2 92.5
(model, layer #) (XXL-YT, 25) (G-YT, 19) (CAP, 16) (XL-LL RA, 5) (CAP, 12) (CAP, 13) (G, 26) (CAP, 15) (CAP, 15)

Best CAP per
task (layer #) 50.3 (11) 99.7 (14) 97.5 (16) 73.4 (10) 2.5 (12) 53.6 (13) 88.2§ (12) 79.2 (15) 92.5 (15)

Best single
layer (CAP12) 51.0§ 99.7 97.0 68.9 2.5 51.5 88.2§ 75.0 81.7
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Fig. 1: Upper) Average test accuracy, averaged across tasks, for “CAP.”
X-axis is the network layer. Different lines are different chunking values.
Lower) Absolute accuracy lost due to smaller context windows. Error bars
are 1 standard deviation. Each bar is a mean over (models) x (layers) = 192
values.

CAP12 significantly outperforms previous representations,
especially on speech emotion recognition: CAP12 outperforms ev-
ery other non-Conformer representation on every dataset we used
with the lone exception of ”ASR Emb” on SAVEE. Especially note-
worthy are the results on CREMA-D and IEMOCAP, where CAP12
outperforms previous embeddings by 16% and 9% respectively.

CAP12 significantly outperforms previous single-model
SoTA on ASVSpoof2019: Linear models on averaged CAP12
would’ve been the best single-model entry in the ASVSpoof2019
competition, and would’ve ranked 3rd overall [20].

CAP12 is strictly better than other representations: Since

YAMNet
COLA TRILL FRILL ASR CAP12
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0.36 0.42 0.47 0.22 0.16

0.39 0.46 0.48 0.2 0.15

0.33 0.29 0.41 0.19 0.14

0.29 0.28 0.34 0.18 0.13

0.54 0.39 0.58 0.6 0.23

0.58 0.43 0.61 0.64 0.32

Fig. 2: Each square is the probability that Model Y correctly predicts an
example given that Model X and Model Y disagree on the prediction. The
result is averaged over task. Each task is an average over examples.

aggregate performance ignores patterns of errors, we investigate the
agreement between predictions made from different embeddings on
a per-example basis. Figure 2 show that when CAP12 and other em-
beddings disagree, CAP12 is correct 32%-64% of the time, while
other embeddings are correct only 13%-23% of the time. With the
exception of the supervised ASR Embedding, it is relatively uncom-
mon for other embeddings to be correct when CAP12 is wrong.

3.3. Context window size

Our second experiment studies the role of context window size. Con-
formers, like Transformers, use the entire audio clip to generate
embeddings, while CNN-based methods have fixed context-window
sizes. To help understand how essential the large context window
is for performance, we feed finite-window-sized inputs to the Con-
former models, just like CNNs process input. We chunk the audio
into fixed length sub-clips (e.g. 1 second), and have the Conformer
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Fig. 3: Upper) Average test-set accuracy, averaged across tasks, for 6 dif-
ferent Conformer models as a function of layer index normalized to [0.0,
1.0] using (layer #) / (# of layers), where # of layers is different for different
models. Middle) Linear CKA scores between all pairs of layers: (left) within
the Conformer XL YT network and (right) across the top performing Con-
former XL YT and XXL YT networks. The colormap is truncated at 0.7 as is
common to both images. Lower) Mean attention distance: (left) the shortest
attention head on every layer; (right) all attention heads on 3 representative
layers of the CAP model.

model generate local embeddings independently. We then average
over all local representations and evaluate the quality of the embed-
ding on each NOSS task. We also average the loss in performance
across models, tasks, and layers to determine the average effect that
finite-context windows have on downstream performance. Results
are shown in Figure 1.

2-second context windows are sufficient: The best-performing
layer for 4 / 3 / 2 / 1 / 0.5 second context windows are 99% / 99%
/ 98% / 96% / 91% as accurate as the entire context window, aver-
aged across tasks. This result is a function of the time-domain of
the phenomena being studied, but is also a function of the fact that
the datasets we use are known to include the signal we care about
(average audio clips shown in Table 2).

3.4. Layerwise Analysis

The comparable performance of CAP12 relative to the optimal per-
task embeddings identified in Table 3 suggests a high degree of
representational stability across layers and architectures evaluated.

Thus, our final set of experiments further probe the per-layer per-
formance across layer and architecture. Figure 3(upper) plots the
average accuracy on NOSS tasks as a function of layer for each ar-
chitecture, but where layer index is normalized to a common [0, 1]
scale. We observe an overall dependence on pretraining dataset, with
YouTube-trained models clearly outperforming LibriLight-trained
ones. However, within the YouTube models, we observe a surpris-
ingly similar performance trajectory as we move through the nor-
malized network position. Furthermore, for each of these models,
we observe a wide performance plateau in the second half of each
network.

To test whether this behavior arises from representational sim-
ilarity in the models’ shared performance plateau, we apply linear
Centered Kernel Alignment (CKA) between pairs of layers both
within and across networks, following the methodology of a recent
vision Transformer study [26]. Briefly, CKA computes a [0, 1]-
valued similarity between two Gram matrices (using an arbitrary
kernel function, which we take to be linear) separately computed
from two representations over the same sample of input examples
(see [25] for details). Figure 3 (middle left) shows the pairwise layer
similarity within the CAP network. While each layer is most similar
to its neighbors, we observe a large block of similar layers in the sec-
ond half of the network corresponding to the performance plateau in
Figure 3 (upper). This indicates that the stable downstream perfor-
mance is indeed fueled by a stable representation across these layers.
While the overall similarity across XL and XXL networks is lower
in Figure 3 (middle right), we again see a block of similar layers
corresponding to shared performance plateau. This indicates simi-
lar characterization of paralinguistic properties in this stage of the
network regardless of total network depth.

Finally, in Figure 3 (lower right), we plot mean attention dis-
tances of self attention layers to study how much temporal context
each layer is aggregating over. Following [26], we compute the mean
attention distance as the attention probability-weighted average tem-
poral distance for each attention head, and average over 1k clips
from [31]. We observe that higher and lower layers contain only
global (long distance) attention heads, whereas middle layers have a
mix of local and global ones. Interestingly, there is a clear correla-
tion between the shortest attention distance on each layer (Figure 3,
lower left) and its average accuracy on NOSS tasks (Figure 3, upper),
which suggests the importance of local information for paralinguis-
tic tasks.

4. CONCLUSION

In this paper, we introduce a class of Conformer-based self-
supervised representation for speech. These representations set a
new state-of-the-art performance on 7/9 paralinguistic speech tasks
using only embeddings averaged across time, and using only lin-
ear models on those embeddings. Furthermore, these representa-
tions substantially outperform other speech representations despite
not using labels for training. Even though the models use the en-
tire context window to generate embeddings, we demonstrate that 2-
second windows give 96% the performance of the full context win-
dow on 7 of 9 tasks, and that these representations with 500ms
context windows still outperform previous representations. Fi-
nally, we show that Conformer models of different sizes and datasets
learn comparable representations at similar parts of the network, in-
dicating that our findings are fundamental to the problem and not a
superficial artifact.



5. REFERENCES

[1] J. Shor et al., “Towards learning a universal non-semantic rep-
resentation of speech,” in Interspeech, 2020, pp. 140–144.

[2] A. Saeed et al., “Contrastive learning of general-purpose audio
representations,” in ICASSP, 2021, pp. 3875–3879.

[3] A. Jansen et al., “Unsupervised learning of semantic audio rep-
resentations,” in ICASSP. IEEE, 2018, pp. 126–130.

[4] Y.-A. Chung et al., “An Unsupervised Autoregressive Model
for Speech Representation Learning,” in Interspeech, 2019, pp.
146–150.

[5] A. van den Oord et al., “Representation learning with con-
trastive predictive coding,” 2019.

[6] W. Hsu et al., “Hubert: Self-supervised speech representation
learning by masked prediction of hidden units,” CoRR,
vol. abs/2106.07447, 2021. [Online]. Available: https:
//arxiv.org/abs/2106.07447

[7] S. Pascual et al., “Learning Problem-Agnostic Speech Rep-
resentations from Multiple Self-Supervised Tasks,” in Inter-
speech, 2019, pp. 161–165.

[8] R. Arandjelovic et al., “Look, listen and learn,” in ICCV.
IEEE Computer Society, 2017, pp. 609–617.

[9] A. Jansen et al., “Coincidence, categorization, and consolida-
tion: Learning to recognize sounds with minimal supervision,”
in ICASSP. IEEE, 2020, pp. 121–125.

[10] S. Hershey et al., “Cnn architectures for large-scale audio clas-
sification,” in ICASSP, 2017.

[11] S. Venugopalan et al., “Comparing Supervised Models and
Learned Speech Representations for Classifying Intelligibil-
ity of Disordered Speech on Selected Phrases,” in Interspeech,
2021, pp. 4843–4847.

[12] A. Baevski et al., “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” in NeurIPS,
vol. 33, 2020, pp. 12 449–12 460.

[13] A. Vaswani et al., “Attention is all you need,” in NeurIPS,
I. Guyon et al., Eds., vol. 30, 2017.

[14] A. Gulati et al., “Conformer: Convolution-augmented trans-
former for speech recognition,” in Interspeech. ISCA, 2020,
pp. 5036–5040.

[15] Y. Zhang et al., “Pushing the limits of semi-supervised learning
for automatic speech recognition,” 2020.

[16] ——, “BigSSL: Exploring the frontier of large-scale semi-
supervised learning for automatic speech recognition,” 2021.

[17] S. wen Yang et al., “SUPERB: Speech Processing Universal
PERformance Benchmark,” in Proc. Interspeech 2021, 2021,
pp. 1194–1198.

[18] J. Peplinski et al., “FRILL: A Non-Semantic Speech Embed-
ding for Mobile Devices,” in Interspeech, 2021.

[19] B. Schuller et al., “The INTERSPEECH 2020 Computa-
tional Paralinguistics Challenge: Elderly emotion, Breathing
& Masks,” in INTERSPEECH, 2020.

[20] M. Todisco et al., “ASVspoof 2019: Future horizons in
spoofed and fake audio detection,” in Interspeech, 2019, pp.
1008–1012.

[21] C. Busso et al., “IEMOCAP: Interactive emotional dyadic mo-
tion capture database,” Language Resources and Evaluation,
vol. 42, pp. 335–359, 12 2008.

[22] R. L. MacDonald et al., “Disordered Speech Data Collection:
Lessons Learned at 1 Million Utterances from Project Eupho-
nia,” in Interspeech, 2021, pp. 4833–4837.

[23] Y. Jia et al., “Transfer learning from speaker verification to
multispeaker text-to-speech synthesis,” in NeurIPS, S. Bengio
et al., Eds., vol. 31, 2018.

[24] J. Shor et al., “Personalizing ASR for dysarthric and accented
speech with limited data,” Interspeech, Sep 2019.

[25] S. Kornblith et al., “Similarity of neural network representa-
tions revisited,” in ICML. PMLR, 2019, pp. 3519–3529.

[26] M. Raghu et al., “Do Vision Transformers see like convolu-
tional neural networks?” 2021.

[27] A. Howard et al., “Searching for mobilenetv3,” in Proceed-
ings of the IEEE International Conference on Computer Vision,
2019, pp. 1314–1324.

[28] Y. He et al., “Streaming end-to-end speech recognition for mo-
bile devices,” in ICASSP, 05 2019, pp. 6381–6385.

[29] M. Tan et al., “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in ICML, ser. Proceedings of Ma-
chine Learning Research, K. Chaudhuri et al., Eds., vol. 97.
PMLR, 09–15 Jun 2019, pp. 6105–6114.

[30] J. F. Gemmeke et al., “Audio set: An ontology and human-
labeled dataset for audio events,” in ICASSP. IEEE, 2017, pp.
776–780.

[31] J. Kahn et al., “Libri-Light: A benchmark for ASR with limited
or no supervision,” in ICASSP, 2020, pp. 7669–7673.

[32] A. Nagrani et al., “Voxceleb: a large-scale speaker identifica-
tion dataset,” in INTERSPEECH, 2017.

[33] K. MacLean, “Voxforge,” Ken MacLean.[Online]. Available:
http://www.voxforge.org/home.[Acedido em 2012], 2018.

[34] P. Warden, “Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition,” ArXiv e-prints, Apr. 2018.

[35] H. Cao et al., “CREMA-D: Crowd-sourced emotional multi-
modal actors dataset,” IEEE transactions on affective comput-
ing, vol. 5, pp. 377–390, 2014.

[36] S. Haq et al., “Speaker-dependent audio-visual emotion recog-
nition.” in AVSP, 2009, pp. 53–58.

[37] Sarthak et al., “Spoken language identification using con-
vnets,” in Ambient Intelligence, I. Chatzigiannakis et al., Eds.
Springer International Publishing, 2019, pp. 252–265.

[38] D. Seo et al., “Wav2KWS: Transfer learning from speech rep-
resentations for keyword spotting,” IEEE Access, vol. 9, pp.
80 682–80 691, 2021.

[39] J. Szep et al., “Paralinguistic Classification of Mask Wearing
by Image Classifiers and Fusion,” in Interspeech, 2020, pp.
2087–2091.

[40] E. Ghaleb et al., “Multimodal and temporal perception of
audio-visual cues for emotion recognition,” in 2019 8th In-
ternational Conference on Affective Computing and Intelligent
Interaction (ACII). IEEE, 2019, pp. 552–558.

https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447

	1  Introduction
	2  Conformer-Based Representations
	2.1  Architectures
	2.2  Pre-training Datasets

	3  Experiments
	3.1  Tasks: The Non-Semantic Speech Benchmark (NOSS)
	3.2  Benchmark Results
	3.3  Context window size
	3.4  Layerwise Analysis

	4  Conclusion
	5  References

