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ABSTRACT

An effective approach to automatically predict the subjective rating
for synthetic speech is to train on a listening test dataset with human-
annotated scores. Although each speech sample in the dataset is
rated by several listeners, most previous works only used the mean
score as the training target. In this work, we present LDNet, a uni-
fied framework for mean opinion score (MOS) prediction that pre-
dicts the listener-wise perceived quality given the input speech and
the listener identity. We reflect recent advances in LD modeling,
including design choices of the model architecture, and propose two
inference methods that provide more stable results and efficient com-
putation. We conduct systematic experiments on the voice conver-
sion challenge (VCC) 2018 benchmark and a newly collected large-
scale MOS dataset, providing an in-depth analysis of the proposed
framework. Results show that the mean listener inference method is
a better way to utilize the mean scores, whose effectiveness is more
obvious when having more ratings per sample.

Index Terms— MOS prediction, speech quality assessment

1. INTRODUCTION

Automatic synthetic speech quality assessment is attractive owing
to its ability to replace the reliable but costly subjective evaluation
process. Conventional objective measures designed for telephone
speech not only require a clean reference speech but also fail to
align with human ratings for more varieties of speech synthesis be-
yond speech codec. Therefore, non-intrusive statistical quality pre-
diction models have received increasing attention in recent years.
They are typically trained on a large-scale crowd-sourced listening
test like the Blizzard challenge (BC) [1] or the voice conversion chal-
lenge (VCC) [2,13L4]), which contains speech samples and their cor-
responding subjective scores. Early works tried to condition sim-
ple statistical models like linear regression with carefully designed
hand-crafted features [S], while recent works use deep neural net-
works (DNNs) to extract rich feature representations from raw in-
puts like magnitude spectrum, resulting in high correlations in both
utterance-level and system-level [6].

Most previous works trained the mean opinion score (MOS) pre-
diction model on the utterance-level scores. Specifically, given an
input speech sample, the model was trained to predict the arithmetic
mean of the several ratings from different listenerﬂ As pointed out
in [7]], one serious problem raised by using such a training strategy
is the data scarcity. Although DNN-based models require a large
amount of data, due to budget constraint, only a limited number of
samples from each system are rated. As a result, the number of per-
utterance scores can be too small for DNN models. Researchers

'In some literature, the term “listener” is also referred to as “judge”.

have tried to address this problem by pretraining on an artificially
distorted dataset [8] or utilizing self-supervised speech representa-
tions (S3Rs) trained on large-scale unlabeled datasets [9].

A more straight-forward approach is to leverage all ratings w.r.t.
each sample in the dataset. This is called listener-dependent (LD)
modeling, and has been studied in the context of speech emotion
recognition [10]]. In addition to enlarging the data size, another ad-
vantage of LD modeling is more accurate modeling of the prediction
by taking into account the preference of individual listeners. In the
field of MOS prediction, a recent study proposed the so-called mean-
bias network (MBNet) [7, 9], which consists of a mean subnet that
predicts the utterance-level score of each utterance and a bias subnet
that predicts the bias (defined as the difference between the mean
score and listener score). During inference, given an input speech,
the bias net is discarded and only the mean net is used to make the
prediction.

In this work, we propose a unified framework, LDNet, that sum-
marizes recent advances in LD modeling. LDNet directly learns to
predict the LD score given the input speech and the listener ID. We
also proposed two new inference methods. The all listeners infer-
ence averages simulated decisions from all listeners in the training
set, and is shown to be more stable than the mean net inference. The
mean listener inference mode relies on a learned virtual mean lis-
tener for fast prediction. We also suggest a more light-weight yet
efficient model architecture design. We conducted systematic exper-
iments on two datasets, including the VCC2018 benchmark and a
newly collected dataset [[11]. Experimental results demonstrate the
effectiveness of our system, meanwhile shedding light on a deeper
understanding of LD modeling in MOS prediction.

2. PRELIMINARY

2.1. Formulation

We first introduce the problem formulation of MOS prediction mod-
eling as described in [7]. Assume we have access to a MOS dataset
D containing N speech samples. Each sample x; has m LD scores
{sf,---,s"} rated by a set of random listeners {I;,--- ,I7"}. We
can further denote the mean score as ;. Note that the same listener
may have rated several different samples. In total, there are M lis-
teners in D, and usually M >> m due to the budget constraint when
collecting D.

A representative work in MOS prediction for synthetic speech is
MOSNet [[6], which is depicted in the left most subfigure in Figure[T]
MOSNet aims at finding a model f that predicts the subjective rating
of a given speech sample. The MOSNet training involves minimiz-
ing a mean loss (using a criterion like MSE) w.r.t. the mean score of
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Fig. 1: Illustration of the models described in this work. From lest to right: MOSNet, MBNet, LDNet, LDNet with MeanNet multitask

learning (LDNet-MN).

each sample:

Lmean = MSE(f(LK;), gi)' (D
During inference, given an input speech x, the trained model is di-
rectly used to make the prediction.

§=f(z). @

2.2. MBNet

MBNet consists of two subnets: a MeanNet f and a BiasNet g,
as shown in the second left most subfigure in Figure[T} Similar to
MOSnet, the MeanNet aims to predict the mean score, while the Bi-
asNet takes not only the speech sample x; but also the listener ID 7
as input to predict the bias score. By combining the mean score and
the bias score, we obtain the LD score and the corresponding bias
loss for MBNet as follows:

The final loss of MBNet is defined as a weighted sum of the mean
loss and the bias loss:

LyvBNet = Lmean + ALbias- 4

During inference, since we aim to assess the average subjective rat-
ing of the query sample, the BiasNet is discarded and only the Mean-
Net is used to make the prediction, similar to Equation 2] We refer
to this inference mode as the MeanNet inference.

2.3. Inefficient design of MBNet

Although MBNet was shown to be effective [7, 9], we argue that
the MBNet design is somewhat inefficient. In the original MBNet,
the MeanNet and the BiasNet both take the speech as input. which
raises several problems. First, there are certain criterion and stan-
dards that are invariant to listeners when rating a speech sample. In
other words, the two subnets should share some common behaviors.
Second, from the inference point of view, if only the MeanNet is
used, then the BiasNet and the subsequent bias loss act only like
a regularization. However, since the BiasNet also takes the speech
as input, it is necessary but inefficient to make the BiasNet big. In
a nutshell, it is worthwhile to redesign the model in order to learn
listenr-dependent and listenr-independent feature representations.

3. LISTENER-DEPENDENT NETWORK (LDNET)

We first present a more general formulation of LD modeling. Con-
sider the model structure depicted in the second right most subfigure
in Figure[I] From the input/output perspective, we only define one

single model f to produce the LD score given the speech and the
listener ID as input. We name our formulation LDNet in contrast to
MBNet since we do not explicitly define two submodules to predict
the mean and bias scores. During training, the model is trained only
to minimize a LD loss as follows:

LipNet = L1p = MSE(f (3, l{), 53) (5)

Note that LDNet can be viewed as a generalization of MBNet, as the
MBNet outputs the LD score by adding the outputs of the MeanNet
and the BiasNet.

3.1. All listeners inference

We then show how to perform inference with only the LDNet. In-
spired by [10]], we propose the all listeners inference, which simu-
lates the decisions of each training listener and average over them:

M
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An obvious advantage of the all listeners inference is its flexibility.
Unlike the MeanNet inference defined in Equation 2] which requires
an explicit network to produce the mean score, the all listeners infer-
ence mode only requires the model to be able to produce LD scores
w.r.t. training listeners. That is to say, all listeners inference also
applies to MBNet.

3.2. Listener independent and dependent model decomposition

As we argued in Section [2.3] we propose to decompose the model
f into an encoder that learn listener-independent (LI) features and a
decoder that fuses the listener information to generate LD features,
as depicted in Figure[I] Formally, we can write

f = Decoder(Encoder(z), ). (7)

The division of the encoder and the decoder is simply where the lis-
tener ID is injected. That is to say, the BiasNet in MBNet can in fact
be factorized in the same fashion. However, in MBNet, the encoder
was a single convolutional 2D (conv2d) layer, while the decoder was
much deeper. We argue that if the listener preference only adds a
shift to the mean score (as the name “bias” suggests), then the de-
coder should be made simple and leave most of the representative
power to the encoder, as done in [[10]. We present how we achieve
this in our model design in later sections.



3.3. Utilizing the mean score with a MeanNet

We can utilize the mean scores with a MeanNet, as depicted in the
rightmost subfigure in Figure [ We refer to this model as LDNet-
MN. Instead of taking the input speech as input, the MeanNet here
takes the LI features extracted with the encoder to predict the mean
score. The motivation is to help the encoder extract LI features since
the mean score is LI by our assumption. This multitask learning
(MTL) loss can be derived by rewriting Equation|[T}

Lyt = MSE(MeanNet(Encoder(x)), §;), 8)
and the loss of LDNet-MN can be written as:
LipNeemn = aLlyrL + ALLp. )

LDNet-MN and MBNet might appear to have a similar structure and
objective, but a fundamental difference is that the MTL loss propa-
gates back to not only the MeanNet but also the encoder, while the
mean loss in Equation [#]only affects the MeanNet. In addition, sim-
ilar to the principle described in Section[3.2} we designed the MTL
head to be as simple as possible.

3.4. Utilizing the mean score with a mean listener

One shortcoming of the all listeners inference is that it requires to run
multiple forward passes first and average the results. A work-around
is using matrix representation to run only one forward pass, with the
cost of extra memory consumption. Alternatively, we can extend
the training set by adding a virtual “mean listener” (ML). Formally,
each sample x; now has m + 1 LD scores, {si,...,s", 5}, and
the listener ID that corresponds to the mean scores of each speech
sample is the mean listener. We can then train a LDNet with the
extended training set, and denote such a variant as LDNet-ML. Note
that we did not assign a different weight (or use techniques like over-
sampling) when updating the model. During test time, in addition to
the all listeners inference, LDNet-ML provides an efficient mean lis-
tener inference mode, which is to simply use the mean listener ID to
run one forward pass.

4. EXPERIMENTAL SETTINGS

4.1. Datasets

VCC2018 [3] This dataset contains 20580 speech samples, where
each sample was rated by 4 listeners. A total of 270 listeners were
recruited. and each listener rated on average 226 samples. We fol-
lowed an open-source MBNet implementationﬂ and used a random
split of 13580/3000/4000 for train/valid/test. Note that all listeners
are seen listeners during validation and testing.

BVCC [11]] This is a newly collected large-scale MOS dataset, con-
taining samples from the past BCs and VCCs as well as state-of-the-
art TTS systems implemented in ESPNet [12| [13]. There are 7106
samples, with each sample rated by 8 listeners. In total there are 304
listeners, with each listener rating 187 samples. A carefully curated
rule was used to create a 4974/1066/1066 train/valid/test data split.
There are 288 listeners in the training set, and there are 8 unseen
listeners in the valid and test sets, with some overlap between the
training listeners. For more details about how the split, please refer
to [14].
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Fig. 2: Illustration of the LDNet model architecture with a RNN-
based decoder.

4.2. Implementation

We will open-source our codebase in the near futureﬂ

Baselines. We used the pretrained model in the official MOSNet im-
plementatiorﬂ We used an unofficial, open-source implementation
of MBNet as mentioned in the previous subsection. Note that we
provided our self-implemented MBNet results because the data split
of the MBNet paper was not specified by the authors, so their results
are not directly comparable with our LDNet results.

Model details. The input of the models is the magnitude spectrum,
which was also used in [6]. All models output frame-level scores,
and a simple average pooling was used to generate the utterance-
level scores. For the LDNets, we tried three encoder variants. To
align with MBNet, we first used the MeanNet structure in MBNet,
which was composed of conv2d blocks with dropout and batch nor-
malization layers. We then tried two efficient but powerful conv2d-
based architectures, MobileNetV2 [15]] and MobileNetV3 [16]. We
used implementations provided by torchvision’| and we refer the
readers to the original papers for more details. The base structure
of the decoder and the MeanNet (in LDNet-MN) is a single-layered
feed-forward network (FFN) followed by projection, and we addi-
tionally experimented with a BLSTM-based RNN decoder. Figure[2]
illustrates the LDNet model architecture.

Training details. MBNet-style models were trained with the Adam
optimizer with learning rate (LR) 0.001, and MobileNet V2 and V3
models were trained using RMSprop. With V2 the LR was decayed
by 0.9 every 5k steps, and with V3 the LR was decayed by 0.97
every 1k steps. The o and A in Equations ] and [8] were set to 1 and
4, respectively. We also used techniques from recent papers which
we found helpful in our experiments. The clipped MSE [7] was used
to prevent the model from overfitting. Repetitive padding [7] was
found to be better than zero padding with a masked loss. Range
clipping [9] was an effective inductive bias to force the range of the
network output.

Zhttps://github.com/sky1456723/Pytorch-MBNet /

3https://github.com/unilight/LDNet

4https://github.com/lochenchou/MOSNet

Shttps://github.com/pytorch/vision/tree/main/
torchvision/models
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Table 1: Results on the VCC2018 test set and the BVCC test set. "MN”, ”All” and "ML” stand for mean net, all listeners and mean listener

inference, respectively. For MSE, the smaller the better; for LCC and SRCC, the larger the better.

VCC2018 BVCC
Model Config Model /4o Utterance level System level Utterance level System level
(Enc./Dec./MeanNet)  size MSE LCC SRCC | MSE ~LCC SRCC | MSE LCC SRCC | MSE ~LCC  SRCC
MOSNet Numbers from [6] - MN | 0538 0642 0589 | 0084 0957  0.888
MOSNet Numbers from [7] - MN | 0465 0638 0611 | 0047 0964 0922 ] ] ] ] - ]
MOSNet Model from [6] - MN - ; - i ; - 0816 0294 0263 | 0563 0261  0.266
MBNett Numbers from [7] - MN | 0426 0.680 0.647 | 0029 0977  0.949 ; } ; ; ;i ;
. . MN | 0955 0658 0630 | 0549 0978 0957 | 0.669 0757 0765 | 0522 0854  0.860
(@) MBNet Self implementation — 1.38M  “p; | 0615 0656 0627 | 0.154 0980 0966 | 0492 0758 0765 | 0271 0856  0.860
(b) LDNet MBNet-style/RNN/-  1.1I8M  All | 0465 0650 0617 | 0.040 0973 0955 | 0397 0740 0734 | 0.189 0856  0.855
(c) LDNet MobileV2/RNN/- 173M Al | 0461 0646 0603 | 0037 098 0958 | 0328 0793 0791 | 0179 0878  0.876
(d) LDNet MobileV3/RNN/- 148M Al | 0432 0676 0641 | 0020 0989 0976 | 0324 0794 0790 | 0.174 0876 0871
(¢) LDNet MobileV3/FFN/- 096M  All | 0457 0661 0621 | 0.013 0988 0976 | 0333 0788 0784 | 0.73 0876  0.870
(HLDNetMN  MobileV3/RNN/FEN  149M  All | 0437 0671 0635 | 0.023 0987 0971 | 0324 0794 0791 | 0.187 0869  0.868
. All | 0463 0653 0617 | 0024 0983 0975 | 0316 0795 0794 | 0.157 0881  0.881
(g) LDNet ML MobileV3/FNN/- 096M wii | 0479 0648 0613 | 0021 0983 0979 | 0333 0795 0794 | 0.169 0.885  0.886

t: The results on this row are not directly comparable with the rows below since it is unclear what data split the authors used. We suggest readers to compare results from (a) to (g).

5. EXPERIMENTAL RESULTS

For all self implemented models, we used 3 different random seeds
and report the averaged metrics including MSE, linear correla-
tion coeffieient (LCC) and Spearsmans rank correlation coeffieient
(SRCC) in both utterance level and system level. The MBNet and
LDNets were trained for 50k and 100k steps, respectively, and
following [9]], model selection was based on system-level SRCC.

Our main experimental results are shown in Table|I] We sum-
marize our observations into the following points.

5.1. Advantage of all listeners inference

As mentioned in Section[3.] all listeners inference can be applied to
any model that produces LD scores w.r.t. training listeners, includ-
ing MBNet. In row (a), compared to mean net inference, all listeners
inference greatly reduces both utterance and system level MSE, and
provided a slight system-level improvement. This shows that all lis-
teners inference can reduce the variance of the prediction and better
capture the relationship between different systems.

5.2. Impact of encoder design

We then investigate the impact of the encoder design by compar-
ing rows (b), (c) and (d) which used the MBNet-style encoder,
MobileNetV2 and MobileNetV3, respectively. On VCC2018, we
observes an stable system-level improvement as the encoder ad-
vances. On BVCC, although the MobileNetV3 encoder gave the
lowest system-level MSE, its LCC and SRCC were slightly lower
than those of the MobileNetV2 encoder. Considering that Mo-
bileNetV3 used 0.25M less model parameters, and empirically its
training time was 33% faster than that of MobileNetV2, we fixed
the encoder to MobileNetV3 in succeeding experiments.

5.3. Impact of decoder design

The influence of a simpler decoder design was inspected by remov-
ing the RNN layer in model (d) to form a simple FFN decoder. The
resulting model (e) had a comparable system level performance, a
64% reduction in model size and an empirical 25% faster training
time. This result is consistent with our argument in Section [3.2] that
the decoder can be made as simple as possible as long as we have a
encoder which is strong enough.

5.4. Effectiveness of LDNet-MN

LDNet-MN shared a similar structure with MBNet and was expected
to bring improvement by utilizing the mean score. However, by
comparing rows (d) and (f), we observed no improvements but only
degradation in both utterance-level and system-level. We also tried
an RNN-based MeanNet but still observed no improvements.

5.5. Effectiveness of LDNet-ML

We finally examined LDNet-ML, which utilized the mean score in
the listener embedding space. By comparing rows (e) and (g), when
both using all listeners inference, a slight degradation was observed
on VCC2018, while a substantial improvement was observed on
BVCC. Interestingly, when switched to mean listener inference, fur-
ther improvements on the system level SRCC can be obtained on
both datasets. There results suggest that LDNet-ML is a better way
to utilize the mean score than LDNet-MN. Also, since VCC2018 has
4 ratings per sample and BVCC has 8, the mean score in BVCC is
considered more reliable, resulting in more significant improvements
brought by LDNet-ML.

6. CONCLUSIONS AND FUTURE WORKS

In this work, we integrated recent advances in LD modeling for MOS
prediction. The resulting model, LDNet, was equipped with an ad-
vanced model structure and several inference options for efficient
prediction. Evaluation results justified the design of the proposed
components and showed that our system outperformed the MBNet
baselines. Results also showed that LDNet-ML is the best way to
utilize the mean scores, and its advantage is even more prevailing
when we have more ratings per sample. In the future, as the pro-
posed techniques are flexible, we plan to combine them with existing
effective methods, such as time-domain modeling [17} [18]] and S3R
learning [9].
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