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ABSTRACT

This paper deals with the problem of localization in a cellular

network in a dense urban scenario. Global Navigation Satel-

lite Systems (GNSS) typically perform poorly in urban en-

vironments, where the likelihood of line-of-sight conditions

is low, and thus alternative localization methods are required

for good accuracy. We present LocUNet: A deep learning

method for localization, based merely on Received Signal

Strength (RSS) from Base Stations (BSs), which does not re-

quire any increase in computation complexity at the user de-

vices with respect to the device standard operations, unlike

methods that rely on time of arrival or angle of arrival infor-

mation. In the proposed method, the user to be localized re-

ports the RSS from BSs to a Central Processing Unit (CPU),

which may be located in the cloud. Alternatively, the local-

ization can be performed locally at the user. Using estimated

pathloss radio maps of the BSs, LocUNet can localize users

with state-of-the-art accuracy and enjoys high robustness to

inaccuracies in the radio maps. The proposed method does

not require pre-sampling of the environment; and is suitable

for real-time applications, thanks to the RadioUNet, a neural

network-based radio map estimator. We also introduce two

datasets that allow numerical comparisons of RSS and Time

of Arrival (ToA) methods in realistic urban environments.
Index Terms— localization, radio map, pathloss, deep

learning, dataset.

1. INTRODUCTION

The location information of a User Equipment (UE) is essen-

tial for many current and envisioned applications that range

from emergency 911 services [2], autonomous driving [3],

intelligent transportation systems [4], proof of witness pres-

ence [5], 5G networks [6], to name some.

In urban environments, Global Navigation Satellite Sys-

tems (GNSS) alone may fail to provide a reliable localization

estimate due to the lack of line-of-sight conditions between

the UE and the GNSS satellites. In addition, the continuous

reception and detection of GNSS signals is one of the domi-

nating factors in battery consumption for hand-held devices.

It is thus necessary to resort to other complementary means

to achieve the UE localization with the desired high accuracy.

The long version of this paper is available at [1].

In cellular networks, the position of UE can be estimated by

using different metrics that UE may report or the network can

infer. The most prominent localization methods in the litera-

ture are based on Time of Arrival (ToA), Time Difference of

Arrival (TDoA), Angle of Arrival (AoA) and Received Signal

Strength (RSS) measurements.

1.1. Received Signal Strength (RSS)

Received signal strength quantifies the received power (aver-

aged over a limited time interval of the beacon frames and

over the signal bandwidth; hence it is not subject to small

scale fluctuations, and coherent reception is not necessary)

at a UE due to signals sent by a Base Station (BS). Since

the transmit power of the BS on its beacon signal slots is

fixed and known, the received signal strength is a function

of the pathloss of the propagation between the BS and the

UE. In fact, received signal strength measurements of beacon

signals are routinely performed by UEs and reported to the

system as “received signal strength indicators” (RSSI). Re-

porting RSS information is a standard feature in most current

wireless protocols. For example, this is used to trigger han-

dovers and to enable UE-BS association for load balancing

purposes. Therefore, exploiting RSS information for local-

ization is attractive since it is a feature already built-in in the

wireless protocols and does not require any further specific

signal processing at the UE, whereas the time-based (ToA and

TDoA) and angle-based (AoA) methods require high preci-

sion clocks and antenna arrays, respectively.

1.2. Ranging-Based Methods

In ranging-based techniques, the distances between the UE

and the BSs are used to estimate the position of UE by later-

ation. Here, the distances are estimated by using RSS or ToA

measurements, based on a statistical signal attenuation or time

delay model to estimate the distance between the UE and the

BS. However, using such models is not appropriate in urban

settings, since in practice the signal undergoes diverse prop-

agation phenomena such as penetrations, reflections, diffrac-

tions, and wave guiding effects, due to the presence of ob-

stacles in the environment. This leads to very large errors in

the distance estimation (See Remark 2 in [1] for a detailed

discussion). Several works, e.g. [7–13], proposed methods to

remedy this. Nevertheless, these methods do not directly use

a complete model of the propagation phenomena, and only

partially alleviate the aforementioned problem.

http://arxiv.org/abs/2202.00738v2


1.3. Fingerprint-Based Methods

Fingerprint-based methods, as opposed to ranging-based

methods, do not impose any modeling assumption on the

signal strength propagation. Instead, these methods rely on

offline generated extensive databases of the measured signa-

tures of the signal at different locations. Given a signal finger-

print, these methods infer the location of the UE by “looking

up” a location with a similar fingerprint from the database

(radio map, cf. Section 2) . Many fingerprint types, such as

visual, radio wave (e.g. RSS or the baseband transfer func-

tion with complex channel coefficients, i.e., the Channel State

Information (CSI)), or motion fingerprints, can be utilized for

localization purpose [14]. In this paper we focus on RSS sig-

natures, which are much more stable (cf. Subsection 1.1) and

lower dimensional than CSI signatures. Fingerprint-based

methods are well-known for outperforming the ranging-based

techniques in complex urban environments [15].

1.4. Physical Simulations of Radio Maps and RadioUNet

A major drawback of fingerprinting is the difficulty in gener-

ating and updating the radio maps. Fingerprinting requires a

labor intensive, time consuming and expensive site surveying

to generate the radio maps. Moreover, the reported positions

of such measurements suffer from the imprecision of GNSS

in urban environments, the very problem the current paper is

dealing with.

A more feasible alternative for generating the radio

map is using physical simulation methods such as ray-

tracing [16, 17], thereby bypassing the extensive measure-

ment campaigns. Based on an approximate model of the

physical signal propagation phenomena, such simulations

yield very accurate predictions, especially when accurate ge-

ometrical description of the urban environment is available.

Many previous works proposed using simulated radio maps

for localization, e.g. [18–25].

However, such simulations are computationally demand-

ing and are thus not suitable for real time applications. Re-

cently, an efficient deep learning-based method termed Ra-

dioUNet [26] (see Subsection 2.2) was proposed by the au-

thors of this paper. This algorithm enables the generation of

high accuracy pathloss radio maps in much shorter time, and

is thus adopted as an important building block of the current

work.

1.5. Machine Learning For Localization

Lately, several machine learning-based localization approaches

have been proposed, e.g. [27–29], see the recent surveys

[30, 31]. To the best of our knowledge, none of the previous

works benefited from the availability of accurate radio maps

via physical simulations (or good approximations like Ra-

dioUNet), and relied solely on the RSS/CSI measurements of

the signals from the BSs at the UE, or vice versa. We note

that the radio maps serve straightforwardly as a means to as-

sess a likelihood for the location of the UE, for each BS, e.g.,

by simply comparing the measured RSS with the radio map

estimate at the location at question. As opposed to previous

work, our presented method fully utilizes accurate radio map

estimations instead of pathloss statistical models.

1.6. Our Contribution

1) We propose an accurate and computationally efficient

localization method, merely based on RSS measurements,

which does not necessitate additional signal processing or

hardware (e.g., calibrated antenna arrays) at the user devices.

2) Using the recently developed RadioUNet, we can esti-

mate radio maps very efficiently and accurately, by using the

knowledge of the propagation environment, e.g., a map of the

city, which we use in the presented work in order to achieve

fast localization. 3) The presented method relies on radio map

(pathloss function) estimations and the RSS values from the

device of interest. Based on these information and additional

input features, the proposed neural network yields very accu-

rate localization results and is robust to inaccuracies in radio

map estimations. 4) The proposed method allows for localiza-

tion at the UE side, which can be used for, e.g. autonomous

driving [32]. 5) We introduce two synthetic datasets which

are publicly available for the research community.

2. PRELIMINARIES

Pathloss (or large-scale fading coefficient), quantifies the loss

of wireless signal strength between a transmitter (Tx) and re-

ceiver (Rx) due to large scale effects. The signal strength at-

tenuation can be caused by many factors, such as free-space

propagation loss, penetration, reflection and diffraction losses

by obstacles like buildings and cars in the environment. In dB

scale1, pathloss amounts to PL = (PRx)dB − (PTx)dB, where

PTx and PRx denote the transmitted and received locally aver-

aged power (RSS) at the Tx and Rx locations, respectively.

Notice that “locally averaged” power is defined as the en-

ergy per unit time averaged over time intervals of the order

of a typical transmission slot in the underlying protocol (e.g.,

the duration of a Resource Block in 5G NR standard [33])

and over the whole system bandwidth. Hence, the effect of

the small-scale frequency selective fading is averaged out and

only the frequency-flat pathloss matters.

A radio map R(x1,x2), defines the pathloss in gray-level

(pixel values between 0 and 1) between any two points x1 and

x2 in the plane (cf. [1]). For fixed Tx position x1 = xtx, the

radio map is a function of the Rx position x2 = xrx, i.e., it can

be represented as a 2-dimensional image where the value of

the pathloss R(xtx,xrx) at each suitably discretized position

xrx corresponds to a “pixel” of the image.

2.1. Radio Map Simulations

In this paper we considered two simulation models, namely

Dominant Path Model (DPM) [34] and Intelligent Ray Trac-

ing [35] with max. 2 interactions (IRT2), computed using the

software WinProp [17] (cf. [1] for the details).

2.2. RadioUNet

RadioUNet is a UNet [36]-based pathloss radio map estima-

tion method introduced in [26,37]. In this paper we use the so

1(·)dB := 10 log
10
(·).



called RadioUNetC , which is a function that receives the map

of the city and the location of a BS and returns an estimation

of the corresponding radio map with a high accuracy, with

root-mean-square-error of order of 1dB in various scenarios,

and a run-time order of milliseconds on NVIDIA Quadro

GP100 [26]. RadioUNet is trained in supervised learning to

match simulations of radio maps, using the RadioMapSeer

dataset [38].

3. LOCUNET

Suppose that a user with location xU = (xU , yU ) measures

the strength of beacon signals (Non-interfering identification

signals), transmitted from a set of BSs Bj , j = 1, . . . , J , with

known coordinates xBj
= (xBj

, yBj
). Based on the relation

between transmit/receive powers and the pathloss (PRx)dB =
PL + (PTx)dB, the pathloss between the device and the BSs,

pj , j = 1, . . . , J , can be calculated, where we assume the

small-scale fading effects are eliminated by averaging over

time and system bandwidth. In our approach, the position

of the UE is estimated based on: 1) The pathloss values pj ,

j = 1, . . . , J , 2) The estimations of the radio maps for each

BS Rj(x, y) := R(xBj
, (x, y)), j = 1, . . . , J , computed via

RadioUNet, 3) The map of the urban environment, the loca-

tions of the BSs (which are fixed and known). In order to

input the above information 1)–3) to the UNet, it is first rep-

resented as a set of 2D images as follows: 1) The RSS values

{pj} are converted to gray-level as explained in [1, 26]. Each

measured pathloss pj is represented as a 2D image Pj(x, y)
of the constant value pj , i.e., for each j this is an all-gray uni-

form image, but the level of gray differs for different indices

j, 2) Each radio map Rj(x, y) is represented as a 2D image,

with pixel value in gray-level. Radio maps are obtained by

using RadioUNet, which takes the map of the urban environ-

ment, and the locations of BSs [26], 3) The map of the urban

environment is represented as a binary black and white image,

where the interior of the buildings are white (pixel value= 1),

and the exterior is black (pixel value = 0), 4) The location of

each BS Bj is represented as a one-hot binary image, where

the pixel at location (xBj
, yBj

) is white, and the rest is black.

These amount to 5+5+5+1 = 16 input channels for J = 5.

The first part of LocUNet is a UNet variant [36], with av-

erage pooling, upsampling + bilinear interpolation, and Leaky

ReLU as the activation function. We call the output feature

map of the UNet, H(x, y) a quasi-heat-map, as its value at

a point (x, y) in the map quantifies the likelihood of the UE

to be located at this point, while it can take negative values,

due to LeakyReLu being the activation function of the net-

work. The final layer of LocUNet computes the center of

mass (CoM) (µx, µy) of the quasi-heat-map H(x, y), µx =
∑

256

x=1

∑
256

y=1
xH(x,y)

∑
256

x=1

∑
256

y=1
H(x,y)

, µy =
∑

256

x=1

∑
256

y=1
yH(x,y)

∑
256

x=1

∑
256

y=1
H(x,y)

, where 256 is

the number of pixels along each axis. The architecture of Lo-

cUNet is summarized in Table 1.

We measure the accuracy of the proposed method with

mean absolute error (MAE), which is the average 2D Eu-

Table 1: Architecture of the first part of LocUNet (w/o final CoM

layer). Resolution is the number of pixels of the image in each fea-

ture channel along the x, y axis. Filter size is the number of pixels of

each filter kernel along the x, y axis. The input layer is concatenated

in the last two layers before the CoM layer.

LocUNet

Layer In 1 2 3 4 5 6 7 8 9

Resolution 256 256 128 64 64 32 32 16 16 16
Channel 16 20 50 60 70 90 100 120 120 135

Filter size 3 5 5 5 5 5 5 3 5 5
Layer 10 11 12 13 14 15 16 17 18 19

Resolution 8 8 4 4 2 4 4 8 8 16
Channel 150 225 300 400 500 400 + 400 300 + 300 225 + 225 150 + 150 135 + 135

Filter size 5 5 5 5 4 5 4 5 4 5
Layer 20 21 22 23 24 25 26 27 28 29

Resolution 16 16 32 32 64 64 128 256 256 256
Channel 120 + 120 120 + 120 100 + 100 90 + 90 70 + 70 60 + 60 50 + 50 20 + 20 + 16 20 + 16 1

Filter size 3 6 5 6 5 6 6 5 5 -

clidean distance between the estimated UE location and the

ground-truth location. Namely, byL(u, ũ) = 1
|S|

∑
k∈S ||uk−

ũk||, where ũk := (µk
x, µ

k
y) and u

k := (xk
U , y

k
U ) denote the

LocUNet estimation and the ground-truth of the kth instance

of the dataset, and S is the entire training set. When using

stochastic gradient descent for training, we take S = Bm,

where Bm is the mth mini-batch of the training set.

Remark 1: The problem at hand looks like classification of

pixels as occupied by UE or not at first glance. Unfortunately,

the number of classes in this formulation of the problem is

prohibitively large (2562). Furthermore, the cross entropy

loss used for classification tasks disregards the neighborhood

of the pixels. Hence, opting for a classification approach for

the localization problem presented in this paper is out of ques-

tion. Another reasonable approach could be the straight for-

ward regression approach, where instead of CoM layer, a fully

connected layer would be used as the last layer. However, our

experiments with this approach yielded a much inferior local-

ization accuracy. Similar observations were made in [39].

3.1. Training

We perform supervised learning on the training set. We use

Adam optimizer [40] with an initial learning rate of 10−5 and

decrease the learning rate by 10 after 30 epochs. We set the

total number of epochs for training as 50 and batch size as

15. To avoid overfitting, we pick the network with the lowest

validation error in the 50 training epochs. We used PyTorch

for implementation2.

3.2. Datasets

We introduce the RadioLocSeer Dataset of 99 city maps,

J = 5 BS locations for each, and corresponding simulated

radio maps (By WinProp [17] and RadioUNet); and Ra-

dioToASeer Dataset, which provides ToA information based

on the dominant path model (cf. [1, 34]) for the same maps

of RadioLocSeer Dataset, to allow for comparison between

RSS and ToA ranging methods in urban scenario. Evalu-

ating the ToA ranging-based methods on this dataset yields

quasi-upper bounds for their performances. For details on the

datasets 3 see [1] .

2The code is available at https://GitHub.com/CagkanYapar/LocUNet.

For reproducibility, see the compute capsule at

https://codeocean.com/capsule/7149386/tree
3The datasets are available at https://RadioMapSeer.GitHub.io/LocUNet.html.

https://GitHub.com/CagkanYapar/LocUNet
https://codeocean.com/capsule/7149386/tree
https://RadioMapSeer.GitHub.io/LocUNet.html


Remark 2: To the best of our knowledge, there exists no

publicly-available dataset of measured radio maps that rep-

resent the signal strength or ToA with a fine resolution, which

is crucial for the localization task. As mentioned before,

establishing real radio maps requires very expensive site

surveying efforts, which is beyond the means of academic

institutions. We note that many other previous works in com-

munications relied on synthetically generated ground-truths

by ray-tracing, e.g. [18–25, 41–44].

4. NUMERICAL RESULTS
In this Section, we demonstrate the performance of LocUNet

by numerical simulations. We assess the accuracy of Lo-

cUNet and the compared methods on the test set, namely, by

MAE with S = T , where T is the test set. LocUNet takes

predicted radio maps, Tx location maps, pathloss measure-

ments, and city map as input features. All of the compared

algorithms with CPU implementation were run on an Intel

Core i7-8750H, and LocUNet was run on a GPU of NVIDIA

Quadro RTX 6000.

4.1. LocUNet Scenarios

We present three different scenarios to showcase the perfor-

mance of LocUNet (and the compared algorithms) under dif-

ferent degrees of accuracy of the used radio map with respect

to the true radio map, from which the pathloss measurements

are reported. DPM:In this very optimistic scenario, we as-

sume the availability of the ground truth (DPM simulations)

radio maps to train RadioUNet. Hence, LocUNet enjoys

having access to very high accuracy radio maps, where the

inaccuracy of the available radio maps with respect to true

radio maps is solely due to the prediction error of RadioUNet.

DPMToIRT2:In this scenario, RadioUNet is trained on DPM

simulations to generate fast DPM radio map predictions with

good accuracy, while the pathloss measurements stem from

IRT2 simulations, which are quite different from simula-

tions/RadioUNet predictions of the dominant path model, of

the same environment map. DPMToIRT2Cars: As in the

previous scenario, RadioUNet is trained on DPM simulations,

and the true pathloss measurements are taken from IRT2 sim-

ulations. Here, the IRT2 simulations are run on the same

city map, but with additional obstructions, cars, which were

not present in the environment map (cf. [1] for details), that

RadioUNet used to estimate the radio maps of BSs. In this

setting, the quality of the radio maps available to LocUNet is

of the lowest accuracy.

Remark 3: The following numerical results are obtained

with the above mentioned high computational power, which

cannot be available at a usual UE. Hence, they showcase the

localization performance of the LocUNet when run at a cen-

tral unit (e.g. in the cloud), based on the reported RSS values

of the UE for each BS. We hope that adapting the RadioUNet

and the proposed LocUNet to the hardware limitations of a

UE (so that the proposed method can be performed locally),

e.g. by knowledge distillation [45], won’t degrade the overall

performance remarkably. The investigation of this problem is

Table 2: Comparison with fingerprint-based methods.

Algorithm MAE Run-Time (ms)

DPM

kNN [46] (k=16) 7.01 ∼ 20
Adaptive kNN [47] (avg. k=2.50) 7.49 ∼ 20

Proposed LocUNet 4.73 ∼ 5

DPMToIRT2

kNN [46] (k=250) 23.38 ∼ 20
Adaptive kNN [47] (avg. k=6.55) 25.39 ∼ 20

Proposed LocUNet 9.48 ∼ 5

DPMToIRT2Cars

kNN [46] (k=300) 27.19 ∼ 20
Adaptive kNN [47] (avg. k=8.51) 29.51 ∼ 20

Proposed LocUNet 13.15 ∼ 5

Table 3: Comparison with ToA ranging-based methods.

Algorithm MAE Run-Time (ms)

POCS [7, 8] 37.89 ∼ 15

SDP [9] 7.16 ∼ 600
Robust SDP 1 [10] 7.55 ∼ 600
Robust SDP 2 [11] 7.63 ∼ 600

Bisection-based robust method [12] 9.49 ∼ 16
Max. correntropy criterion method [13] 12.45 ∼ 30

Proposed LocUNet DPM 4.73 ∼ 5

however outside the scope of the current paper and is left as

future work.

4.2. Comparison with Pathloss Fingerprint-Based Meth-

ods

In Table 2, we compare LocUNet with the competing fingerprint-

based methods under the scenarios described in Subsec-

tion 4.1. We compare with two fingerprint-based methods,

namely, k-nearest neighbors (kNN) method [46] and an adap-

tive kNN variant [47]. We determined the k values of the kNN

algorithm by coarse grid-search. We observe that LocUNet

provides the best accuracy among the fingerprint-based meth-

ods for all the scenarios, and LocUNet is especially good at

dealing with inaccuracies in the radio map estimations, as

witnessed in the results of the DPMToIRT2Cars scenario.

4.3. Comparison with ToA Ranging-Based Methods

We also compare our method with the state-of-the-art ToA

ranging-based algorithms, which assume that it is not possi-

ble to distinguish whether a link between the UE and BS is

in line-of-sight (LOS) or non-line-of-sight (NLOS). The dif-

ference between ranging with ToA measurement of the ray

(range is calculated as: ToA × the speed of light) and the true

geographical distance between UE and BS is called the NLOS

bias. See [1] for the details on the choice of the parameters

of the compared methods. In Table 3 we show the numer-

ical results of the methods based on ToA ranging. We also

show the performance of the LocUNet scenario DPM. Note

that both LocUNet and the ToA methods are implemented in

the DPM setting, but the ToA methods use an additional infor-

mation about ToA. We observe that in this ideal scenario for

LocUNet, MAE is 4.73m, where the best result among ToA

ranging-based methods is 7.16m, which serves as a quasi-

lower bound for ToA-based methods, due to the extremely

optimistic RadioToASeer Dataset [1].
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