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ABSTRACT

In this paper, we introduce a pretrained audio-visual Trans-
former trained on more than 500k utterances from nearly
4000 celebrities from the VoxCeleb2 dataset for human be-
havior understanding. The model aims to capture and extract
useful information from the interactions between human
facial and auditory behaviors, with application in emotion
recognition. We evaluate the model performance on two
datasets, namely CREMAD-D (emotion classification) and
MSP-IMPROV (continuous emotion regression). Experimen-
tal results show that fine-tuning the pre-trained model helps
improving emotion classification accuracy by 5-7% and Con-
cordance Correlation Coefficients (CCC) in continuous emo-
tion recognition by 0.03-0.09 compared to the same model
trained from scratch. We also demonstrate the robustness of
finetuning the pre-trained model in a low-resource setting.
With only 10% of the original training set provided, fine-
tuning the pre-trained model can lead to at least 10% better
emotion recognition accuracy and a CCC score improvement
by at least 0.1 for continuous emotion recognition.

Index Terms— Emotion recognition, Transformer, mul-
tiomdal fusion

1. INTRODUCTION

Recent advances in machine learning and signal processing
enable an unprecedented opportunity to computationally an-
alyze and predict social behaviors. A better understanding
of how people behave and express themselves could have
wide applicability. Much human interaction research (e.g.
emotion recognition) is task-oriented, which often requires
time-consuming and expensive data collection processes;
and hence, suffers from small population that prevents ML
models to generalize well. Despite the scarcity of labeled
data, there is an abundance of data on human communica-
tion that is unlabeled, multi-modal, and easily accessible [1].
This opens an opportunity to address the challenge, by cre-
ating self-supervised pretrained models that are trained on
unlabeled data and can be finetuned for downstream tasks.
Similar approaches have been very successful in NLP [2] and
speech processing [3] tasks.

Most research extending the standard Transformer [4] in
a multimodal context focuses on the visual-and-language do-
main. Existing work generally utilize the language-pretrained
BERT [2] and train only the visual components through ei-
ther the single-stream framework (image and text are jointly
processed by a single encoder) [5, 6] or dual-stream frame-
work (with separate visual and text encoders) [7, 8]. To the
best of our knowledge, Lee et al. present the only pretrained
Transformer-based model for the audio-and-visual domain
[9]. Their end-to-end model contains two Transformers to
encode audio and visual inputs independently, followed by
another Transformer that processes the encoded audio and
video signals sequentially. Lee et al. pretrain their model on
Kinetics-700 (containing 700 human action classes) [10] and
AudioSet (containing 632 audio event classes) [11]. Since
both datasets contain little information on human interac-
tions, the pretrained models would not be appropriate for
downstream tasks such as emotion recognition.

In this study, we present the first pretrained audio-visual
Transformer-based model that learns from human commu-
nicative behaviors. We then validate the the pretrained
model for the downstream task of emotion recognition on
the CREMA-D dataset [12] and the MSP-IMPROV dataset
[13].

2. METHOD

2.1. Multimodal Transformer architecture

We adapt the Multimodal Transformer (MulT) architecture
[14] for the pretraining task. At the high level, the architec-
ture consists of 4 main components: the temporal convolu-
tions that projects features of different modalities to the same
dimension, a sinusoidal positional encoding to capture tem-
poral information, the Cross-modal Transformers that allow
one modality to pass information to another, and the stan-
dard Self-Attention Transformers that process the fused in-
formation produced by the Cross-modal Transformers. An
overview of the MulT architecture is available in Figure 1
(right).

At the core of MulT is the Cross-modal Attention Block
(Fig 1 left), which differs from the standard Transformer
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Fig. 1: The architecture of the ith layer in a b → a Cross-modal Transformer (Cross-modal Attention Block) is shown on the
left. The architecture of the Multimodal Transformer is shown on the right. Re-illustration based on [14]

encoder layer in two ways. First, the module merges audio-
visual temporal information though the Multihead Cross-
modal Attention layer, with the Queries being in one modal-
ity while the Keys and Values being in another. Second,
each Cross-modal Attention Block learns directly from the
low-level feature sequences (i.e. X [0]

b is passed to the b → a
Cross-modal Attention Block regardless of the layer posi-
tion) while the standard Transformer takes intermediate-level
features as input. Tsai et al. [14] empirically show that
adapting low-level features for the Cross-modal Attention
Block is beneficial for MulT. With only 2 modalities in con-
sideration, we have 2 types of Cross-modal Attention Blocks
(V → A and A → V ). Eventually, we concatenate the out-
puts of the Cross-modal Transformers and pass them through
a standard Self-attention Transformer [4]. The outputs of the
Self-attention Transformer are finally converted to the origi-
nal audio and visual feature dimensions for predictions using
two independent fully-connected layers.

2.2. Pretraining procedure

Following prior work on pretrained Transformers [2, 3, 9],
we use the masked frame prediction task to train our model.
Specifically, we randomly select 15% of the frames, mask
them for both the audio and visual inputs, and train the model
to reconstruct the masked frames. Following [2, 3] on the
selected frames for masking, we mask the frames all to zero
with a probability of 0.8, replace them with randomly selected
frames with a probability of 0.1 and keep them untouched
with a probability of 0.1. Similar to [3], we use the L1-Loss
to measure reconstruction error. The loss for each prediction
is the sum of the L1-loss for the audio modality and the L1-
loss for the visual modality. We adapt the strategy of masking
consecutive frames from [3] to prevent the model from ex-

ploiting local smoothness. We use dynamic masking for the
training set (the masked frames of each input sequence are
selected independently every time the sequence is called) and
static masking for the validation set (the masked frames for
each input sequence are pre-computed) to make the compari-
son between models’ performances fair.

2.3. Feature selection

The Multimodal Transformer is not end-to-end, so we need
to extract acoustic and visual features as inputs to the model.
Since features can be more or less powerful depending on the
context of their usage and the target of our study is emotion
recognition, we compare different baseline features on the
CREMA-D and MSP-IMPROV datasets [12, 13]. The moti-
vation for pretraining data with MulT is to capture and model
temporal dependencies so we also want the base features to be
temporally independent. Thus, even though features extracted
from pretrained Speech Transformers such as [3, 15, 16] are
powerful, they are not suitable to be base features for MulT.

With these considerations, we select and compare the
features extracted from pretrained Facenet [17], pretrained
ResNet [18] and OpenFace Action Units’ intensities [19]
for the visual modality. For the acoustic modality, we com-
pare Mel-scale spectrogram, Linear-scale spectrogram and
features extracted by TRILL [20]. To extract features from
FaceNet and ResNet for a given video, we extract frames
from the video at a constant rate and crop the face regions
before feeding them into the pretrained models. Because
TRILL only provides one vector representation for each input
acoustic sequence, we split the input sequence into segments
that matches a specified frame rate and extract the representa-
tions of the segments. To make the comparison fair, we apply
all extracted features to the same model (a single-layer Gated
Recurrent Unit with a hidden size of 512 and dropout ra-



tio of 0.2 with fixed initialization) for emotion classification
(CREMA-D dataset) and continuous emotion estimations
(MSP-IMRPOV dataset). We find that extracted OpenFace
and TRILL features outperform other baseline features by
a considerable margin on both datasets. On the CREMA-D
dataset, OpenFace shows a gain of 17% in Accuracy in com-
parison with the ResNet representations, and TRILL shows
a gain of more than 11% in Accuracy from the Linear-scale
spectrogram. On the MSP-IMPROV dataset, TRILL outper-
forms the Linear-scale spectrogram with a CCC margin of
at least 0.03 while OpenFace outperforms the second-best
baseline with a CCC margin of at least 0.14.

3. EXPERIMENTS

3.1. Data

Voxceleb2 We use the Voxceleb2 dataset for pretraining [1].
It contains more than 1M utterances from more than 6,000
celebrities collected from around 150K videos on Youtube.
The dataset is fairly gender balanced (61% are men). For
the acoustic modality, we first segment the audio, into 200ms
segments, before feeding them into TRILL [20] for feature
extraction. Because TRILL originally provides a single em-
bedding for an audio input as a whole, we do not want to
extract the features with smaller segment duration. For the
visual modality, we use OpenFace2.0 [19] to track 17 Fa-
cial Action Unit (AU) intensities from the videos at 30 FPS.
Since there is a high variation in the video quality of the Vox-
celeb2 dataset, we remove frames with detection confidence
below 80%. We then downsample OpenFace outputs to 5
FPS to match the frame rate of the acoustic modality. We
remove utterance samples with the audio and video features
misaligned for more than 1 second (more than 5 frames differ-
ence). Although MulT can handle unaligned multimodal se-
quences, the model achieves better performance with aligned
sequences. In the end, we end up with a training dataset of
524K utterances from about 4K speakers (the average dura-
tion of each utterance is 5s with a standard deviation of 0.7s).
CREMA-D The CREMA-D dataset is an acted audiovisual
database consisting of 6 basic emotional states (happy, sad,
anger, fear, disgust and neutral). It includes 7,442 video clips
from 91 actors speaking 12 sentences with different emotions.
The emotion labels are collected through crowd-sourcing
from 2,443 raters, and the human recognition accuracy of in-
tended emotion is 63.6%. The emotion classes in the dataset
are balanced. In this study, we perform speaker-independent
split of the CREMA-D dataset into the train-validation-test
set with a ratio of 60%-20%-20% respectively.
MSP-IMRPOV The MSP-IMPROV dataset is an acted au-
diovisual database that includes emotional interactions be-
tween people in a dyadic conversational setting. The con-
versation scenarios are designed to invoke realistic emo-
tions. The dataset consists of 8,450 video recordings that are

CREMA-D MSP-IMPROV
Arousal Valence

Accu. ↑ MAE ↓ CCC ↑ MAE ↓ CCC ↑
TFN [21] 63.09 0.466 0.581 0.596 0.592
EF-GRU 57.06 0.676 0.399 0.774 0.478
LF-GRU 58.53 0.496 0.546 0.619 0.579
MulT WOP 63.93 0.466 0.665 0.580 0.607
MulT BASE 68.87 0.456 0.697 0.576 0.658
MulT Large 70.22 0.431 0.693 0.563 0.692

Table 1: Comparison between the performances of different
models. WOP stands for w/o Pretraining.

recorded during 6 dyad sessions from 12 actors. The anno-
tations for the dataset are collected via crowd-sourcing, and
each video is annotated with at least 5 evaluators. The anno-
tation includes emotional content and a five-point Likert-like
scale on valence (1-negative and 5-positive), arousal (1-
excited and 5-calm) and dominance (1-weak and 5-strong).
In this study, we focus on the continuous emotion regression
task that estimates the values of Valence and Arousal for a
given video. We use Session 1-4 as the training set, Session 5
as the validation set and Session 6 as the test set.

3.2. Pretraining implementation details

Following prior work on pretraining Transformers [2, 3],
we implement the pretraining task with two model settings:
BASE and LARGE. For both configurations, we set the num-
ber of attention heads to 12, the number of consecutive frames
for masking to 3 (∼ 0.6 sec) and the length of each processed
sequence is 50 ( ∼ 10 sec).

The hidden sizes for each of the audio and visual modality
are 288 (BASE) and 576 (LARGE). The sizes of the feed-
forward layers in each cross-modal attention block are 1152
(BASE) and 1536 (LARGE). The sizes of the feed-forward
layers in each Self-Attention Block are 2304 (BASE) and
3072 (LARGE). The BASE configuration has 6 A → V
cross-modal attention blocks, 6 V → A cross-modal atten-
tion blocks and 6 self-attention blocks, which sums up to
38.3M parameters. The LARGE configuration has 8 A → V
cross-modal attention blocks, 8 V → A cross-modal at-
tention blocks and 8 self-attention blocks that totals 89.2M
parameters. We train both models with the Adam optimizer
[22]. The learning rate is set to 5e−4, with a linear learning
rate scheduler and a warmup portion of 0.1. Both models are
trained with a batch size of 64 for 30 epochs.

3.3. Application on downstream task

For fine-tuning, the last elements from the outputs of the pre-
trained MulT are passed to a residual block followed by a
fully-connected layer to make final predictions. We compare
the performance of the fine-tuned MulT to 4 baseline mod-
els: Early Fusion GRU (EF-GRU), Late Fusion GRU (LF-
GRU), the Tensor Fusion Network (TFN) [21] and the Multi-



Fig. 2: Performance of the models with restricted data.

modal Transformer without the pretrained weights initializa-
tion. It is important to note that TFN only processes static
inputs, i.e., each modality of a sample is represented by a
vector. However, we decide to include it as a baseline model
because TRILL is originally developed to represent an audio
as a whole with a vector [20]. Hence, for each video, we use
the vector representation extracted from TRILL for the acous-
tic modality along with the average of the 17 OpenFace AU
intensities for the visual modality as inputs to TFN.

To make the comparisons fair for EF-GRU and LF-GRU,
we make them Bidirectional and control the hidden size as
well as number of layers such that the number of parameters
of these models are approximately the same with the BASE
configuration of MulT. For MulT without pretrained weights,
we perform experiments with both the BASE and LARGE
configurations and report the better performing configuration
based on the validation set. We train all of the models until

early stopping occurs on the validation set.
Table 1 shows the performance of different models on the

CREMA-D and MSP-IMPROV datasets. Since CREMA-D’s
classes are balanced, we use accuracy as our evaluation met-
ric. Following [23, 24, 25], we report the Mean Absolute
Error (MAE) and the Concordance Correlation Coefficients
(CCC) to assess the quality of the regression models on the
MSP-IMPROV dataset.

The fine-tuned models outperform the baseline models by
a considerable margin. For emotion recognition accuracy, we
see a 5% improvement for the BASE model and 7% improve-
ment for LARGE model in comparison with the baselines. On
the MSP-IMPROV dataset, the fine-tuned models also shows
improvements over the baselines on both Arousal and Va-
lence regressions. Specifically, fine-tuning the BASE model
achieves 3.2% and 5.1% gain in CCC for Arousal and Valence
regression respectively. Although there might be discrepan-
cies between train-validation-test set split, we find our best
results (accuracy of 70.22% on CREMA-D, CCC of 0.697
and 0.692 on MSP-IMPROV Arousal and Valence regression)
competitive with existing benchmarks on CREMA-D [26, 27,
28] and MSP-IMPROV [29, 24].

3.4. Limited resource setting

Since the ultimate motivation of transfer learning is to reduce
the requirements on labeled data, we are interested in explor-
ing the capability of the pretrained MulT in a limited resource
setting. Figure 2 shows the performance of the models when
only N% of the original training set are used for training. We
can see that the performance drop curves for the pretrained
models are less steep in comparison with training MulT from
scratch and TFN. With only 10% of the original training set
(less than 500 training samples on both datasets), finetuning
the pretrained models outperforms training from scratch by
at least 10% for emotion recognition, and more than 20%
and 10% CCC improvements for Arousal and Valence re-
gression respectively. This further suggests the robustness of
the pretrained weights in preventing overfitting with limited
data. We can also note that TFN tends to perform better than
training MulT from scratch with small training sets, which is
expected because light models tend to be less susceptible to
overfitting than complex ones with limited data.

4. CONCLUSION

In this study, we present the potential of pretraining the
Multimodal Transformer architecture [14] to model human
communicative behaviors. We validate the usefulness of
the pretrained model for the task of emotion recognition on
two datasets, and demonstrate the robustness of the model
in a low-resource setting. In the future, we will explore
the performance of the model on other domains relating to
communication such as mental health assessment.
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