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ABSTRACT

Non-intrusive load monitoring (NILM) is the analysis of elec-
tricity loads by means of a single supply wire, so avoiding
separate monitors on individual appliances. Some approaches
to NILM use the V-I trajectory for feature generation but they
apply ad-hoc rules to generate the feature vector. This pa-
per demonstrates a systematic method of feature generation
called the path signature which has recently been applied in
machine learning, often with notable success. We show how
the path signature generates features from the V-I trajectory
to give a test set accuracy of 98.81% on the COOLL dataset.
We conclude that the path signature is easier to use and gener-
alize than ad-hoc features, and it can be applied to many other
applications which use multivariate sequential data.

Index Terms— non-intrusive load monitoring, disaggre-
gation, machine learning, feature selection, path signatures

1. INTRODUCTION

Features for machine learning are often manually crafted in a
process called feature engineering. In this process the practi-
tioner selects inputs and transformations of those inputs that
are expected to be effective for the application. Feature en-
gineering has the advantage that domain expertise can be in-
corporated a-priori into the model. A disadvantage is that the
process of feature generation and selection can be arbitrary,
and potential sources of information can be missed. This dis-
advantage is apparent in the case of multivariate data, where
interactions between variables may be latent or obscure. In
this paper we demonstrate the effectiveness of the path sig-
nature in finding interactions within load data for identifying
appliances.

1.1. Non-intrusive load monitoring

Non-intrusive load monitoring (NILM) involves the monitor-
ing of the electricity load at a single wire, for example on the
supply to a house, and its analysis into individual appliance
usage. The research field is usually traced back to [1], which
described a load monitoring device based on cluster analysis.
The field has progressed in the last two decades motivated in
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part by the need to reduce consumer energy use, and its imple-
mentation has been facilitated by machine learning. There are
a number of reasons why appliances are monitored: to allow
consumers to manage their energy usage, to detect appliance
faults or aging, and for gathering long-term appliance usage
statistics. So there is a strong motivation to pursue the goal of
effective appliance monitoring at the supply.

1.2. Datasets

Academic treatments of the subject have been stimulated by
the collection of datasets and the development of analysis
techniques and software such as the NILMTK toolkit [2].
The first major database to be collected was the the MIT Ref-
erence Energy Disaggregation Data Set (REDD) database [3]
in 2011, and more datasets have subsequently been released
by researchers in different countries. Summaries of databases
can be found in [2, 4–6].

The data used in this paper from is from the Controlled
On/Off Loads Library (COOLL) dataset [7], which holds high
frequency current and voltage measurements representing the
load characteristics of individual appliances. These measure-
ments were taken under laboratory conditions with precise
control of the times when the appliances were switched on
and off. The COOLL dataset is appropriate for this study
because measurements are available for single appliances
switched on one at a time, so facilitating the analysis of ma-
chine learning features. The high frequency COOLL data is
compressed using the Free Lossless Audio Codec (FLAC)
format with separate files for the current and voltage sig-
nals. A total of 42 appliances of 12 types were measured at
a sampling frequency of 100 kHz. For each appliance, 20
measurements are available, each corresponding to a specific
phase delay ranging from 0 to 19 ms with a step of 1 ms. In
this way, an appliance is sampled over the whole range of
phase delays in a single voltage cycle.

1.3. NILM features

In NILM research features are typically used for both super-
vised learning, where they are mapped to a label, and for un-
supervised learning where the feature values are organised
without the use of labelled data. Unsupervised approaches,
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for example clustering, have been of interest in recent years
because they are more practically applicable than supervised
models, which may not have been trained on all the appli-
ances to be used. A short review of unsupervised methods for
NILM is given in [6], and more general reviews can be found
in [4, 8, 9]. A convenient taxonomy of features commonly
used in NILM is given in [10].

Use of V-I trajectories was first suggested in [11] which
describes the analysis of more than 120 loads and proposes
the V-I trajectory as a basis for classifying electric load sig-
natures. The method is further developed in [12] and [13] in
which a feature vector is derived from the V-I trajectory by
quantifying ‘shape features’ of the trajectory. For example, a
resistive load, in which current is proportional to voltage has
a straight line trajectory, while non-linear loads give rise to
a loop whose area is proportional to the phase delay. Shape
features have been found to be both interpretable and effec-
tive at classifying aggregate loads into meaningful groups of
appliances [13]. Further work on deriving features from the
V-I trajectory is described in [14], which proposed 10 features
derived from the shape of the trajectory, and which are inter-
pretable in physical terms. A new set of 12 shape features,
both steady-state and transient, is proposed in [15]. These
features are used as a reference set whose classification re-
sults we reproduce to provide a baseline for the experiments
using the path signature.

2. METHOD

In this section we introduce the path signature and show how
it can transform the V-I trajectory into a sequence of numbers
which can be used as predictors in machine learning. We in-
vestigate two separate supervised learning tasks, 1) predicting
the reference features themselves, and 2) predicting appliance
labels from the COOLL dataset. The first task uses the path
signature to predict the reference features which are derived
from the shape of the V-I trajectory. The second task is to
compare the performance of the path signature and the refer-
ence features in predicting appliance labels.

2.1. Path signature

In practical terms, the path signature is easy to use: Python
packages esig and iisignature can be used to compute path
signatures directly from the V-I trajectory. A visual example
of signature computation can be found in [16, p.7]. Here
we give the relevant mathematical theory of the signature
method, which is essentially a sequence of real numbers
which summarizes the trajectory. It is defined as follows:
a trajectory or path X through a space Rd is a continuous
mapping from an interval [a, b] to Rd. The path is dependent
on parameter t ∈ [a, b], and can be written,

Xt = {X1
t , X

2
t , X

3
t , . . . X

d
t } (1)

The kth-fold iterated integral of X is given by,

S(X)i1,...ika,t =

∫
a<tk<t

· · ·
∫
a<t1<t2

dXi1
t1 . . . dX

ik
tk

(2)

The path signature is a collection of all the iterated integrals
of X ,

S(X)a,b = (1, S(X)1a,b, S(X)2a,b, S(X)1,1a,b, S(X)1,2a,b, . . . )
(3)

S(X)a,b is a sequence of real numbers, and the superscripts
are drawn from the set G of all multi-indexes,

G = {(i1, . . . , ik)|k > 1, i1, . . . , ik ∈ {1, . . . , d}} (4)

So in two dimensions a path signature of degree 2 is S =
{1, S(1), S(2), S(1,1), S(1,2), S(2,1), S(2,2)} while a path sig-
nature of degree 3 would include the terms S(1,1,1), S(1,1,2)

etc.. The path signature was originally introduced by Chen
[17] who applied it to piecewise smooth paths, and it was fur-
ther developed by Lyons and others [18, 19]. In this study we
use the log signature [16] which holds the same information
as the path signature but in a more compact form: for a given
degree, the log signature is shorter. Visualizations of the first
two levels of the path signature are shown in [16, p.22], and
examples of its application are given in [20, 21].

In the experiments we use a path in 3-dimensions: time,
voltage and current, where time increases from 0 to 1 over the
cycle, and voltage and current are measured in volts and am-
peres respectively. We generate the log signature from each
of the 840 samples in the COOLL dataset for both transient
and steady state cycles.

2.2. Reference features

As a reference set of features derived from the shape of the
V-I trajectory, we use those proposed in [15]. A summary
of each feature is given later in Table 1, and a more precise
definition can be found in [15]. The first 8 reference features
are derived from the steady state trajectory, denoted STD, and
the last 4 features are derived from both steady state and the
transient trajectory, denoted STD/TRN.

We generate the reference set of features for the COOLL
data using the software from [15]. Steady state features are
generated from the V-I trajectory which starts at 60 voltage
cycles after the appliance is switched on, from the point where
the voltage transitions from a negative to a positive value.
Similarly, transient features are sampled at 2 voltage cycles
after the switch-on time, again starting from when the voltage
crosses zero from a negative value. The trajectory used for
generating features is the path of the time, voltage and cur-
rent values over the nominal period of a single 50 Hz cycle,
that is 20 ms.

2.3. Machine learning

We use the voltage and current data from the COOLL dataset
for two supervised learning tasks. The first task is to predict
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the values of reference features using the log signature of the
steady state trajectory. The second task is to classify the ap-
pliance labels using the log signature as input, and compare
results with those using the reference feature set. In both tasks
we train models by 5-fold cross-validation on 80% of the 840
samples, and use the remaining 20% as a test set. Since each
individual appliance is sampled 20 times over different phase
delays, the training set is constructed from 16 randomly cho-
sen samples from each appliance, the test set from the remain-
ing 4 samples. This method ensures that distribution of appli-
ance labels is similar in both the test and training sets. In
common with the results published in [15] we take as the out-
put labels the appliance type, rather than the specific instances
of each appliance.

2.3.1. Predicting features

For predicting the reference features, an ensemble model is
used, consisting of a bag of decision trees, also called a ran-
dom forest. A single set of model hyperparameters is used for
predicting all the reference features. For predicting those fea-
tures derived only from the steady state trajectory, the log sig-
nature of the steady state trajectory is used as a feature vector.
For predicting the reference features which use both transient
and steady state trajectories, the feature vector is formed by
concatenating the respective log signatures.

2.3.2. Predicting appliance labels

We use the log signature of degree 3 to predict appliance la-
bels, and compare the results with a replication of the results
published in [15]. Then we use a selected subset of fea-
tures for each of the reference and signature sets, and com-
pare those results. For replicating the published results we
use the three types of classifier described in [15] with some
differences in the training protocol. The classifiers are: an en-
semble of decision trees (ENS), a K-nearest neighbour (KNN)
classifier, and a support vector machine (SVM). Each model
is selected by minimising the 5-fold cross-validation error on
the training set. For the ENS classifier, the specific model
chosen was a bag of trees (random forest), for the KNN, a
one-nearest-neighbour was used with Euclidean distance, and
for the SVM, a polynomial kernel was used. Full details
of the model choices are available in the code repository at
https://github.com/Fivetuple/nilm_sig. Us-
ing each chosen model we train on the training set and report
both the cross-validation training accuracy and the accuracy
on the separate test set.

3. RESULTS

3.1. Predicting reference features

The results for predicting each reference feature from the cor-
responding log signature of the time-voltage-current path are

shown in Fig. 1, with numerical errors given in Table 1. Most
features are predicted to within 20% using the median abso-
lute percentage error as a metric.
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Fig. 1. Prediction of the 12 features in the reference set using
a log path signature of degree 5. The line x = y is shown.
Axis limits have been chosen to exclude a small number of
outliers.

Table 1. Predicting reference features
Name Trajectory Geometric interpretation % Error
dpb STD Distance from min to max points 0.09
angp STD Angle between min and max points 1.19
len STD Length of trajectory 0.40
md STD Max distance to origin 0.09
vss STD Variations of the signal slope 239.17
asl STD Average slope value 104.29
dc STD Distance from centroid to origin 36.64
angc STD Angle between centroid and origin 99.62
dbc STD/TRN Difference between centroids 14.60
dbd STD/TRN Difference between dbp 8.24
dbang STD/TRN Difference between angp 2.11
ov STD/TRN Difference between max current 2.19
STD denotes the steady state trajectory, TRN the transient.
Features with a high median absolute error are highlighted.

The features vss, asl, and angc each have prediction er-
rors close to or greater than 100%. Feature vss is the varia-
tion of the signal slope, which is a way of representing signal
frequency information, and asl represents the average slope
value. Both these features take a threshold whose value is
fixed. The feature angc is the angle, in degrees, between the
centroid of the V-I trajectory (steady state) and the origin. In
theoretical terms, since the the V-I trajectory is uniquely rep-
resented by a signature of sufficient degree any features de-
rived solely from the trajectory can be predicted accurately.
In practice however insufficient training data can contribute
to prediction errors.
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Fig. 2. Relative predictor importance for the reference fea-
tures when used for predicting appliance labels. A more im-
portant feature has a greater predictive value.

3.2. Predicting appliance labels

3.2.1. Using reference features

We first replicate the experiment in [15] in which the appli-
ance labels are predicted using the reference set of features1.
Our replicated cross-validation and test set results are shown
in Table 2, along with those published in [15] for comparison.
The reproduced results are close to those in the earlier study,
allowing for differences in training and model selection.

Table 2. Appliance classification using reference features.
Method ENS KNN SVM
Published [15] 98.10 (1.04) 87.94 (2.50) 94.29 (1.76)
Replication 97.77 (0.74) 85.42 (2.40) 93.30 (2.37)
Test set 97.62 83.33 95.24
Accuracy shown as percentage correct with standard deviation in brackets.

Fig. 2 shows the relative importance of each feature in the
reference set when the ENS model is used for label predic-
tion. The two most important features are angp and dbang.
By comparison [15] identified five features using a selection
algorithm: angp, md, and dbang from the reference set, and
two features from [14], ar, an area proportional to the phase
difference between current and voltage, and r, the curvature
of the mean trajectory line. Fig. 2 also shows that the features
vss, asl, and angc have almost no predictive value. These
three features were those found to be difficult to predict using
the log signature, as shown in Table 1.

3.2.2. Using signatures

Table 3, third row, shows the results of predicting appliance
labels using the log signature and the ENS classifier. For com-
parison, the first two rows give the published and replicated

1We thank Bruna Mulinari for help in replicating the experiments in [15]
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Fig. 3. Relative predictor importance for the log signature
when used for predicting appliance labels. A more important
feature has a greater predictive value.

results. The last three rows are for a selected set of features,
again giving published and replication results for compari-
son. The selected reference features used were angp, md, and
dbang, with ar and r from [14]. For the signature features, the
7 most important terms identified from Fig. 3 were used. The
replication shows a lower mean cross-validation result than
the published value, but a similar test set result. The accuracy
when using the 7 most important terms in the log signature is
similar to that for the reference features.

Table 3. Appliance classification using signature features.
Set Method Features Accuracy(SD) Test set

Full
Published [15] 12 98.10 (1.04) –
Replication 12 97.77 (0.74) 97.62
Signature 28 98.81 (1.13) 98.81

Selected
Published [15] 5 99.37 (0.63) –
Replication 5 98.51 (1.17) 99.40
Signature 7 99.11 (0.82) 98.81

Accuracy shown as percentage correct with standard deviation in brackets.

Conclusion
The path signature uniquely characterizes a V-I trajectory
with a sequence of real numbers which can be used as a
feature vector for machine learning. In this application it
provides accuracy comparable with shape features, but while
these ad-hoc features have been carefully refined since their
inception, we found some to be redundant. The path signa-
ture provides a more systematic and generalizable approach
to feature generation. Since software is available for its
computation it is in effect easier to implement than ad-hoc
features. As such it is a good choice for this application, and
it is widely applicable when using multivariate sequential
data in machine learning.
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