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ABSTRACT

Data augmentation methods have shown great importance in diverse
supervised learning problems where labeled data is scarce or costly
to obtain. For sound event localization and detection (SELD) tasks
several augmentation methods have been proposed, with most bor-
rowing ideas from other domains such as images, speech, or mono-
phonic audio. However, only a few exploit the spatial properties of a
full 3D audio scene. We propose Spatial Mixup, as an application of
parametric spatial audio effects for data augmentation, which modi-
fies the directional properties of a multi-channel spatial audio signal
encoded in the ambisonics domain. Similarly to beamforming, these
modifications enhance or suppress signals arriving from certain di-
rections, although the effect is less pronounced. Therefore enabling
deep learning models to achieve invariance to small spatial pertur-
bations. The method is evaluated with experiments in the DCASE
2021 Task 3 dataset, where spatial mixup increases performance
over a non-augmented baseline, and compares to other well known
augmentation methods. Furthermore, combining spatial mixup with
other methods greatly improves performance.

Index Terms— Sound event localization and detection, spatial
audio, sound source localization, acoustic scene analysis, data aug-
mentation

1. INTRODUCTION

A sound event localization and detection (SELD) task is a dual task
where the goal is to classify the type of sounds present in an acoustic
scene as well as estimate their direction of arrival (DOA) [1, 2, 3]. It
is similar to image classification and image segmentation in the sense
that the objective is to identify the content and location of elements
in the scene. So SELD can be thought of as a machine listening
problem that has attracted significant attention lately, as it is key for
artificial intelligence methods to understand the world via sound [4].

In the current state of the art, most SELD tasks are solved us-
ing complex systems that are based on deep learning networks [5,
6, 7]. The input features are usually either log mel spectrograms
(or other time-frequency transforms), or raw waveforms extracted
from a soundfield recorded by a microphone array. The models vary
in size and complexity, but include multiple architectures of convo-
lutional networks with additional elements such as recurrent layers
[8], transformer-based self-attention modules [9] or dense residual
blocks [10]. Post-processing techniques such as weight averaging,
ensemble methods and filtering are also common [5].

However, the labeled datasets available to train and evaluate
such systems are generally very limited, as this requires labeling for
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Fig. 1: Illustrative comparison of different spatial transformations
for a 2D scene. (Top) shows the original omnidirectional response
and (top right) the corresponding ACCDOA labels pointing to
sources. (Middle left) shows a traditional beamformer and (middle
right) the corresponding transformed ACCDOA labels, where high
suppression effectively eliminates events outside the main lobe.
(Bottom left) shows the proposed spatial mixup with a soft spheri-
cal cap and (bottom right) the optionally transformed labels.

both event class and DOA for each frame in the recording. There-
fore, a significant component of modern SELD systems is the data
augmentation strategy [11]. Although spectrograms can be inter-
preted as a 2D image representation of sound, and systems with those
input features have successfully adapted some image data augmen-
tation techniques (e.g. random cropping, scaling, etc.) [12], the best
performing methods use augmentation techniques designed for au-
dio content, such as mixup with equalization EMDA [13] or without
equalization [14], spec augment [15], impulse response simulations
[5], pitch and/or time shifting and stretching [16, 17], filtering, dy-
namic range compression [17], or spatial soundfield rotations [18].

Except for soundfield rotations and impulse response simula-
tions, most of the aforementioned augmentation techniques were de-
signed for monophonic or single channel audio, and only a few ex-
ploit the spatial characteristics of the input signals. To address this
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issue, in this paper we propose Spatial Mixup, which uses a general
parametric spatial audio effect as a data augmentation technique by
applying a directional loudness modification to the audio data. This
modification effectively transforms the spatial characteristics of the
recorded soundfield, enhancing sound arriving from some directions
while suppressing others. However, unlike a beamformer, the over-
all transformation is gentle, such that the overall content (class) and
DOA of the all recorded events is preserved. Figure 1 shows a visual-
ization of this concept compared with an omnidirectional 2D signal,
and a traditional beamformer. The left column shows the omnidirec-
tional responses, and the right column shows the the activity-coupled
Cartesian DOA (ACCDOA) vectors [19], which assign an event ac-
tivity to the length of corresponding Cartesian DOA vectors.

2. RELATED WORK

Soundfield rotations in ambisonics domain such as swapping, arbi-
trary rotation, rotation over a single axis were first proposed by [18].
These generate new DOA labels, that might not exist in the dataset.
However, the overall soundfield stays constant, where the acoustic
environment (i.e the room) is rotated as well, so the relationship be-
tween direct sound, early reflections, and reverberation remains un-
changed. The relative positions between events is also preserved.
Nonetheless, this has proven successful, especially for the localiza-
tion subtask, at least when there are few overlapping sources.

Expanding the concept of soundfield manipulations, [11] pro-
posed audio channel swapping (ACS) and multi-channel simulation
(MCS), where ACS applies a similar soundfield rotation as the chan-
nel swapping in [18], to both MIC and FOA signals. MCS aims
to simulate new spatial information for specific events. To do this,
a preprocessing step analyzes the recording to distinguish between
noise and possible sources, then a beamformer extracts the direct
sound while the spatial characteristics are extracted computing the
spatial covariance matrix. This is comparable to a parametric decom-
position into direct and diffuse components [20, 21]. Augmentation
occurs by adding random perturbations to the spatial components,
preserving the content, simulating new acoustical environments.

Finally, techniques that combine the content of multiple input
signals have shown effectiveness too. First, mixup (referred in this
paper as regular mixup) is a linear combination of an original signal
with some other signal. In the case of time domain audio signals, this
is equivalent to mixing two sound tracks together, which translates
into two sound events occurring at the same time. In addition, the
labels corresponding to the signals can be combined too if available.
The regular mixup [14] can be expressed as

x̂ = λx + (1− λ)y, (1)

where x is the single channel input audio signal, y is the interfering
signal, x̂ is the augmented signal, and λ ∼ Beta(α, β) is a hyperpa-
rameter that controls the strength of the mixup. An alternative mixup
is EMDA [13], applies random equalization to each signal, reducing
the overlap in frequency domain, while preserving time mixing.

3. PROPOSED METHOD: SPATIAL MIXUP

For this paper, we assume that the input signals represent a sound-
field encoded in ambisoncis format [22]. This means that a full 3D
sound scene has been captured by a microphone array and properly
encoded into an orthonormal basis of spherical harmonics represent-
ing the full soundfield.

The main idea of spatial mixup is to slightly modify the spatial
characteristics of a recorded spatial audio signal to increase the ro-
bustness of neural networks models to these transformations. While
regular mixup combines the content of two different sound signals,
spatial mixup can be understood as applying the mixup operation to
a spatially transformed version of the same signal. This operation is
now defined as

X̂ = λX + (1− λ)TX, (2)

where X̂ ∈ Rnout is the augmented audio signal, nout = (Nout +
1)2 for the output order Nout, X ∈ Rnin is the multi-channel spa-
tial audio input signal, nin = (Nin + 1)2 for the input order Nin,
and T ∈ Rnout×nin is a transformation matrix that performs linear
combinations of the channels in X via a matrix multiplication. The
transformation matrix T is further decomposed as

T = Y gridGW , (3)

where Y grid ∈ Rnout×ngrid is a matrix of real spherical harmonics
[23] of order Nout computed at the azimuth and elevation of a dis-
crete set of points sampled from a unitary sphere; G = diag[gi] ∈
Rngrid×ngrid is a diagonal matrix composed of gains for each point i
in the grid defined for Y grid ; and W ∈ Rngrid×nin is a beamform-
ing matrix that couples the number of input channels to the grid di-
rections. This effectively spatially decomposes the input soundfield
into a discrete sampling. Although W can be set to any beamform-
ing matrix, in practice it is sufficient to set W = 1

(Nin+1)2
Y T
grid,

which corresponds to a hypercardiod beamforming to the grid points.
The setup presented for T can be applied to many spatial trans-

formations depending on the values of G , including warping, com-
pression, and acoustic zooms [24, 25, 21]. An additional rotation
matrix R can be added to Equation (3) if needed. In this paper we
focus the analysis on a modification known as directional loudness.

3.1. Directional Loudness

A directional loudness modification corresponds to a spatial filter
using some function. The spherical cap function divides the area of
a unitary sphere into two sections, where the inner section is denoted
as a spherical cap. This cap is parametrized by a central angle Ωc =
(θ, φ) of azimuth and elevation, and a width γc. The spherical cap
function [25, 24] is defined as the vector of gains

gi = g1U(ΩTc Ωi − cos
γc
2

) + g2U(cos
γc
2
− ΩTc Ωi), (4)

for all i ∈ ngrid grid directions in G, U is the unit step function, γc
is the width of the cap in radians, and g1, g2 are the gains for the
region inside and outside the cap respectively.

Moreover, the aforementioned transformation matrix T can also
be applied to the SELD labels, especially if they are expressed as
ACCDOA vectors. In this case, given that the ACCDOA labels are
unitary activity vectors pointing to the DOA of a sound events, the
application of spatial mixup applies T to the labels is expressed as

Ẑ = λZ + (1− λ)T Y 0
0, (5)

where Ẑ are the augmented labels, Z are the true labels expressed as
ACCDOA vectors, and Y 0

0 are the spherical harmonics of first order
and degree, computed for the direction of all active labels.

Generally, any function can be applied to G, but we experimen-
tally found that the success of the directional loudness as augmen-
tation method relies heavily on a transformation that is gentle and
not too extreme. For this reason, we select two hyperparameters sets



Fig. 2: Comparison of cross sections of the polar pattern responses for the omnidirectional channel of hard (top row) and soft (bottom
row) spherical caps of first order. (Left column) A typical example directional loudness transform of each spherical cap. (Right)
Distribution of the same responses for a sample of 500 patterns with randomized parameters for the spherical caps.

Table 1: Hyperparameters for the spherical caps.

Gtype Parameter Distribution Values

Sph-Cap (Soft)

Cap-center-azi uniform [0, π]
Cap-center-ele uniform [−π, π]
Cap-width uniform [π/4, π]
G1 exponential [0,−3]
G2 uniform [−3,−6]

Sph-Cap (Hard)

Cap-center-azi uniform [0, π]
Cap-center-ele uniform [−π, π]
Cap-width uniform [π/4, π/2]
G1 exponential [0,−6]
G2 uniform [−6,−20]

.defined as soft and hard spherical caps, detailed in Table 1. Figure 2
compares these two types of spherical caps, for both a single exam-
ple of a typical response as well as the coverage and distribution of a
random sample of them. Overall, hard spherical caps cover a wider
range and some patterns include negative phase regions, while soft
spherical caps are more even, with smaller variations.

4. EXPERIMENTS

4.1. Experimental Setup

To evaluate the performance of our method, we used the TAU-
NIGENS Spatial Sound Events 2021, introduced in the DCASE
2021 Task3 challenge [26]. This dataset includes 600 one minute
long clips of spatial audio recordings, presented in two formats:
the raw microphone array signals (MIC) and first order ambisonics
(FOA), sampled at 24 kHz. The dataset is split into training, val-
idation, and test subsets, consisting of 400, 100 and 100 minutes
respectively. Each clip contains a dynamic acoustic scene, where
specific sound events, are mixed together in a simulated acoustical
environment. In total, there are 12 sound event classes, with exam-
ples such as footsteps or a dog barking. Each scene is generated
with a collection of up to 3 concurrent sound events, that can be
either spatially stationary, or follow a trajectory inside the sound
scene. In addition, interference noise along with background noise
are also present, where the former are localized sound events that
do not belong to any of the classes, and the latter are continuous
multi-channel recordings of ambient noise naturally present in the
acoustical environments where the impulses were collected.

The evaluation tasks hence consists of the classification of sound
events as well as the estimation of DOAs for full clips. For this pur-
pose we used the same classification (ERLD ↓, FLD ↑) and localiza-
tion (LECD ↓, LRCD ↑) as explained in the official DCASE challenge
[27]. We also adopted an aggregated SELD error (ESELD ↓), as

ESELD =
ERLD + (1− FLD) + LECD

π
+ (1− LRCD)

4
. (6)

The goal of the experiments was to compare the impact of the
augmentation methods fairly, and not necessarily to get the best pos-
sible performance in the task. Consequently, the training setup was
the same for all. All experiments were trained for 100,000 iterations
of batch size 32, with validation every 10,000 steps, using the offi-
cial subset split. We minimize the MSE loss, using Adam optimizer
and a learning rate scheduler with a warmup stage starting at learn-
ing rate 1e-4, reaching 1e-3 after 5 validation steps, followed by a
reduce on plateau scheduler (monitoring the validation SELD error)
with patience of 3 validation steps and a decay rate of 0.9. For each
experiment, we report the test subset results, from the model of the
best validation step of multiple runs.

4.2. Features and models

The experiments are conducted using two different systems, a low
complexity model with standard architecture, and another with a
more sophisticated model with a large amount of parameters. The
systems are:

1. Basic system - We use the CRNN10 model proposed by [28],
which consists of 2d convolutional layers with batch normal-
ization and increasing number of channels. The inputs are lin-
ear amplitude STFT and interchannel differences using only
the FOA input signals, for a total of 7 input channels. The
spectrograms are computed using frame size of 512, hop size
of 240, and total input length for the network is 1.27 seconds.

2. Sophisticated system - We use the RD3Net [19], which con-
sists of a series of densely connected blocks of 2d, dilated
convolutions. Each block is followed by a down sampling
module and finally, a gated recurrent unit (GRU), fully-
connect (FC) layer, and up sampling operation as outputs.
The input features are the same as in the basic system.



Table 2: Performance of Spatial Mixup with different directional
loudness G matrix types in the basic system.

System ERLD ↓ FLD ↑ LECD ↓ LRCD ↑ ESELD ↓
Baseline 0.689 40.5 20.7 44.4 0.489
Random 0.776 24.2 26.9 32.5 0.590
Identity 0.668 42.2 19.5 42.9 0.481
Sph-Cap (Hard) 0.693 39.1 22.1 45.6 0.492
Sph-Cap (Soft) 0.664 42.1 19.4 43.2 0.480

Table 3: Performance of Spatial Mixup with different directional
loudness G matrix types in the larger sophisticated system.

System ERLD ↓ FLD ↑ LECD ↓ LRCD ↑ ESELD ↓
Baseline 0.678 43.5 21.8 53.5 0.458
Random 0.744 27.0 29.3 41.8 0.555
Identity 0.643 46.9 22.1 56.0 0.434
Sph-Cap (Hard) 0.660 44.7 22.1 55.7 0.445
Sph-Cap (Soft) 0.615 48.9 18.7 54.2 0.422

4.3. Results

4.3.1. Effects of Directional Gain G

Table 2 shows the performance of the proposed augmentation
method with different types of G compared with a baseline without
any data augmentation for the basic model. In these experiments,
the spatial mixup was applied only to the input signals X , the output
order was 1, and the Y grid was computed for a t-design [29] of de-
gree 3 (giving 6 total directions). For most metrics, the performance
is better for all G types except random (uniformly random diagonal
matrix), which is significantly worse. Surprisingly, the identity ma-
trix and the soft spherical caps show similar results, while the hard
spherical caps are not as good. The former can be explained in part
because the full transformation matrix is not truly orthogonal, due
to the limited spatial resolution in the grid that generates some small
non-zero values. The latter is most likely because the hard spherical
caps can sometimes generate extreme patterns that resemble a beam-
former, rather than a gentle manipulation of the soundfield. These
patterns are possibly too extreme for the model to learn invariance.

The same comparison of different G types was explored for the
sophisticated model in Table 3. Here, the spatial mixup setup was the
same as the previous experiments, except that the Y grid was com-
puted with a larger t-design of degree 7, for 24 directions, giving
better spatial resolution. The results show a similar trend as Table 3,
where the main difference is that the G type identity was not quite
as good as the soft spherical caps. This suggests that the small non
zero values are not as strong here, due to the larger number of di-
rections in the grid. In addition, the higher capacity of the model is
able to accommodate for the soft spherical caps, learning better in-
variance. In summary, a smooth G function, with a sufficiently large
grid works best.

4.3.2. Other effects

The general method allows to utilize a different order for the outputs
than the input signals. However, even if a higher output order is se-
lected, it is not possible to generate spatial information that is not
already there. That said, for data augmentation purposes, having a
higher order might enable a different architecture for neural network
models, (e.g. with more input channels), as well as more nuanced
directional loudness modifications. In addition, the labels can also
be augmented as described in Equation (5). Cursory experimental

Table 4: Performance of common data augmentation method com-
pared with the Spatial Mixup using the basic system.

System ERLD ↓ FLD ↑ LECD ↓ LRCD ↑ ESELD ↓
Baseline (B1) 0.689 40.5 20.7 44.4 0.489
B1+Mixing 0.649 45.7 20.4 51.9 0.447
B1+Rotation 0.633 46.5 20.4 51.1 0.442
B1+SpecAugment 0.702 37.6 23.4 45.2 0.501
B1+EQ 0.675 42.5 20.9 44.6 0.480
B1+All 0.652 46.2 22.4 57.3 0.435
B1+Sph-cap (Soft) 0.662 42.8 20.1 45.7 0.472
B1+All+Sph-cap (Soft) 0.628 46.3 20.1 50.8 0.442

results of both effects showed very small differences to results al-
ready presented, so these are not explicitly included in this paper.
Nevertheless, it is possible that other tasks, in particular tasks with
high order ambisonics data might see more significant performance
gains when using spatial mixup.

4.3.3. Comparison to other data augmentation

Table 4 compares spatial mixup to other common data augmenta-
tion methods including mixing [19], spec augment [15], FOA sound-
field rotations [18], random equalization [13] and a combination of
all four. These results show that from the common augmentations,
FOA rotations and mixing are the best performers, achieving a faster
convergence and better metrics in general. While random EQ in-
creases the performance slightly, it is surprising that spec augment is
markedly worse than the baseline. More importantly, spatial mixup
with soft spherical caps (using a grid with t-design of degree 7)
shows considerable performance gains over the baseline, better than
EQ but slightly less than mixing. Lastly, when comparing the com-
binations with and without spatial mixup, it seems that adding spher-
ical caps reduces errors, but also reduces recall for events. However,
larger systems might exploit this better.

A possible explanation for these results is that the DCASE 2021
Task3 benefits the most from methods that improve equivariance
rather than invariance, given that both FOA rotations and mixing
increase the coverage of the labels. In contrast, spatial mixup mod-
ifies the relative levels of certain directions, increasing sound level
diversity for all events. Nonetheless, spatial mixup shows good re-
sults.

5. CONCLUSIONS

In this paper, we proposed a data augmentation method for sound
event localization and detection (SELD) tasks, based on the applica-
tion of spatial audio parametric effects, in a process we call Spatial
Mixup. This enables modifications to the spatial characteristics of
audio signals encoded in ambisonics format, by applying a transfor-
mation matrix to the time domain input signals. This matrix is ob-
tained by spatially sampling the original soundfield, and appliying a
directional loudness gain modification. The method was evaluated
in the DCASE2021 Task3 dataset, which includes complex sound
scenes with overlapping and non-stationary sources, as well as inter-
ference and background noise. The method proved effective when
using gentle modifications known as soft spherical caps. It improves
all metrics when compared to a non-augmented baseline, and shows
similar advantages compared to well known augmentation methods.
Future research could explore the application of the method for other
machine learning tasks with spatial audio, as well as analyze further
transforms such as audio warping or acoustic zoom.
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