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ABSTRACT

Speaker recognition, recognizing speaker identities based on voice
alone, enables important downstream applications, such as personal-
ization and authentication. Learning speaker representations, in the
context of supervised learning, heavily depends on both clean and
sufficient labeled data, which is always difficult to acquire. Noisy
unlabeled data, on the other hand, also provides valuable information
that can be exploited using self-supervised training methods. In this
work, we investigate how to pretrain speaker recognition models by
leveraging dialogues between customers and smart-speaker devices.
However, the supervisory information in such dialogues is inherently
noisy, as multiple speakers may speak to a device in the course of the
same dialogue. To address this issue, we propose an effective rejec-
tion mechanism that selectively learns from dialogues based on their
acoustic homogeneity. Both reconstruction-based and contrastive-
learning-based self-supervised methods are compared. Experiments
demonstrate that the proposed method provides significant perfor-
mance improvements, superior to earlier work. Dialogue pretraining
when combined with the rejection mechanism yields 27.10% equal
error rate (EER) reduction in speaker recognition, compared to a
model without self-supervised pretraining.

Index Terms— self-supervised training, speaker recognition,
dialogue, rejection mechanism

1. INTRODUCTION

Speaker recognition answers the fundamental question “who is
speaking” based on a sample of speech, thereby enabling both per-
sonalization and authentication in speech-based applications. Most
speaker recognition model training is supervised, in the sense that it
relies on both clean and sufficient speaker-labeled data [1–6]. How-
ever, labeling data in the quantities required for production-level
models is a substantial bottleneck. Recent work [7–13] is turning to
unlabeled data for pretraining a speech model first, and then fine-
tuning it on a smaller labeled dataset. In this work, we focus on how
to pretrain a speech model suitable for speaker recognition tasks.

In general, there are two types of self-supervised methods to
pretrain speech models, namely, based on reconstruction or based
on contrastive learning. For the former, one or a few consecutive
frames are masked and then models are trained to reconstruct or
predict the original features, such as APC [9], MockingJAY [10],
DeCoAR [14] and HuBERT [12]. As the masked features are recon-
structed based on context, reconstruction-based methods are more
suitable to speech recognition tasks and less effective on speaker
recognition tasks. For the latter, positive and negative instances are
constructed and models are optimized by conducting comparisons,
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which aim to group positive instances together while separating neg-
ative instances, such as COLA [7], CPC [13], and wav2vec [15].
Therefore, to effectively distinguish utterances from different speak-
ers, contrastive learning methods are more appropriate.

In this work, we propose a contrastive self-supervised method
specialized for speaker recognition. To achieve this goal, we lever-
age unlabeled dialogues between smart-speaker devices and their
users. Table 1 shows two dialogue samples, where each dialogue
is composed of spoken interactions between customers and a smart
speaker. We presume that most dialogues, such as Dialogue A, are
clean in the sense that each involves customer utterances from a sin-
gle speaker only. Therefore, customer utterances from the same di-
alogue serve as positive instances, while customer utterances from
different dialogues form negative instances. However, a few dia-
logues, e.g., Dialogue B, are noisy with respect to speaker identities,
i.e., contain customer utterances from more than one speaker. In or-
der to avoid contaminating the model training with positive samples
involving different speakers, we develop a rejection module. The
rejection module allows the model to effectively learn from clean
dialogues and give less weight to the noisy ones, leading to a more
accurate and robust speaker recognition model.

Thus, our contribution is a self-supervised learning method for
speaker recognition systems, demonstrating that
• a dialogue dataset from human-device interactions is an ef-

fective unlabeled data source that can be leveraged in self-
supervised pretraining of speaker recognition models;

• self-supervised rejection is a very effective tool to deal with
false positive pairs caused by multi-speaker dialogues, pro-
viding more than 15% equal error rate (EER) improvement
even without fine-tuning;

• fine-tuning the pretrained model utilizing our framework
can further improve speaker recognition and relative EER
improvement is as high as 41.28%.

2. METHOD

The unlabeled dialogue data is noisy because the customer utter-
ances in the same dialogue can come from different speakers. It
follows that the positive instances constructed by pairing utterances
from the same dialogue are not reliable all the time. To alleviate
this issue, we propose a new all-versus-all loss function and a re-
jection mechanism. Unlike angular prototypical loss [1] and GE2E
loss [16], all-versus-all loss avoids using a centroid to represent a
dialogue, but rather conducts comparisons for each utterance in a
dialogue. In this way, the model will suffer less from centroids ag-
gregating multiple speakers while learning from all utterances in a
dialogue. In addition, the rejection mechanism guides the model in
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Table 1: Sample dialogues

Dialogue ID Device type Time Source Utterance

A Google Home

2021-07-03 12:12:02 Customer Hey Google, what’s the weather like tomorrow?
2021-07-03 12:12:12 Device In New York city, it will be mostly sunny with the highest 77 and lowest 64.
2021-07-03 12:12:20 Customer Thanks Google.
2021-07-03 12:12:27 Device No problem.

B Echo

2020-07-01 09:10:01 Customer Alexa, add eggs to my shopping list.
2020-07-01 09:10:08 Device A dozen of eggs of organic large brown eggs have been added into your cart.
2020-07-01 09:10:15 Customer Alexa, I also want dark chocolate. Can I have that, Daddy?
2020-07-01 09:10:25 Device Sorry, I did not recognize your voice. Would you like to get enrolled?

Encoder

u1,1 u1,2

u2,1 u2,2

u3,1 u3,2

u4,1 u4,2

Batch

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

x4,1 x4,2

Embeddings

Batch Loss

Hey Google, what’s the weather like tomorrow? (u1,2)

Thanks Google. (u1,2)

Alexa, add eggs to my 

shopping list. (u2,1)

Alexa, I also want dark chocolate. Can I have that, Daddy? (u2,2)

w1

w2

w3

w4

Similarity 
+

Softmax

Dialogue
Compactness

Feature

Extractor Loss weights

Cross 
ℓ1,1 ℓ1,2

ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2

ℓ4,1 ℓ4,2

Entropy 

Each Loss

Fig. 1: Each batch contains M = 2 utterances from N = 4 different dialogues, M · N utterances in total. We multiply the loss from each
utterance depending on the compactness of the dialogue the utterance is extracted from.

learning more from clean dialogues instead of noisy ones by weight-
ing their loss contributions differently.

Figure 1 shows the proposed modeling framework. Given N
dialogues (N = 4 in our case), we randomly sample M customer
utterances per dialogue (M = 2 here) to construct a batch of M ·N
utterances. An encoder is employed to extract an embedding for each
utterance in the batch. Then, a loss for each utterance is calculated
based on its similarities to other utterances in the same dialogue and
those in other dialogues, which are stored in a similarity matrix. At
the same time, a compactness score is calculated for each dialogue,
expressing the speaker purity of the dialogues. The overall batch
loss is defined by a weighted sum of utterance losses considering the
dialogue compactness scores.

2.1. All-versus-All Loss

The presence of the multiple speaker dialogues in the dataset causes
the class centroids of GE2E loss to be flawed, as different speakers
will have completely different embeddings. Specifically, if there are
multiple speakers in a dialogue, the negative pair centroids would
not be ideal as the centroids are not reliable and the aggregation
step leads to information loss, causing wrong gradient directions.
In this work, we propose all-versus-all (AvA) loss function to alle-
viate the negative pair centroid problem. We compare the embed-
ding to all the other embeddings without relying on centroids, not
only avoiding the flawed centroid problem but also increasing the
effective number of negative pairs. For positive pairs, we compare
the query embedding with the centroid of the embeddings coming
from the same dialogue, excluding the query utterance. The similar-
ity between the utterances coming from same dialogue is promoted
whereas the similarity between the utterances coming from differ-
ent dialogues is penalized. If we form our batch with M utterances
coming from N different dialogues, then the number of comparison

pairs will be M · (N − 1) + 1 with only one of them being posi-
tive. GE2E and angular prototypical loss, on the other hand, have
N − 1 negative pairs and a single positive pair. [17] demonstrated
that larger batch sizes, meaning more negative pairs, help improve
the performance of self-supervised learning; therefore AvA gives a
better loss function for our problem. Figure 2 visualizes all the loss
functions considered and explains the main differences among them.
Formally,

xi,j = f(ui,j) (1)

s(xi,j , xk,l) =
xTi,jxk,l

||xi,j ||2||xk,l||2
(2)

ci,j =
1

M − 1

M∑
k=1,k 6=j

xi,k (3)

`i,j = − log
es(xi,j ,ci,j)∑

k,l,k 6=i e
s(xi,j ,xk,l) + es(xi,j ,ci,j)

(4)

where f is an encoder model that produces embedding representa-
tion xi,j from an utterance ui,j , where ui,j is the j-th utterance from
dialogue i. s calculates the cosine similarity between two embed-
dings. ci,j is the positive centroid of a given utterance ui,j based on
dialogue i. `i,j is the cross entropy loss for a given utterance ui,j .

2.2. Self-supervised Rejection

Although AvA loss is solving part of the negative pair centroid prob-
lem, it does not offer a solution for the positive pair errors caused
by the multiple speaker dialogues. Since the model will try to distin-
guish all the provided training data as well as possible, multi-speaker
examples may push the neural network to learn some non-robust and
SID-unrelated features. This is similar to the problem of noisy labels
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Fig. 2: Comparison between the effect of all-versus-all loss (AvA), generalized end-to-end loss (GE2E), and angular prototypical loss (AP).
Dashed lines represent distances encouraged to increase, while solid lines represent distances being decreased. Centroids denoted by black
nodes are computed as the mean of the support set during training.

in supervised learning [18,19]. We employ the idea of loss reweight-
ing to decrease the contributions from noisy dialogues. Our method
works on the fly, providing single-pass training with a significant
performance improvement. We believe this framework also works
for speaker recognition with datasets with noisy labels. Furthermore,
our rejection mechanism works without significant additional com-
putational cost since the similarities are already computed for the
loss functions.

Given the dialogue embeddings, we compute the average of the
pairwise cosine similarities, which we call the compactness of the
given dialogue. Then, we pass the compactness values through a sig-
moid function with two hyper-parameters: temperature and thresh-
old.

Ci =
1

M(M − 1)

M∑
j=1

M∑
k=1,k 6=j

s(xi,j , xi,k) (5)

wi = σ(T ∗ (Ci − t)) (6)

where T is the temperature controlling the steepness of the sigmoid
function, and t is a predefined threshold that determines the center of
the sigmoid σ(·). We allow T to be learned by the model; however,
we do not propagate derivatives through compactness Ci, letting it
function simply as a scaling factor for the loss values.

Our final loss function becomes the weighted sum of the per-
utterance losses:

L =
∑
i,j

wi · `i,j (7)

When the similarity between two utterances coming from the same
dialogue is relatively small the weight of that particular dialogue
will also be small. The idea is decreasing the loss contribution from
multi-speaker dialogues, since their compactness will be much lower
than that of single-speaker dialogues.

3. EXPERIMENTS

Across all our experiments we employ a model consisting of a multi-
layer unidirectional LSTM followed by a fully connected layer net-
work. The dimensionality of each LSTM layer is 768, whereas the
last linear layer has 256 units.

We pretrain our models on the AWS platform using 8 NVIDIA
V100 GPUs with 16GB memory for 200 epochs. We employ the
Adam optimizer with an initial learning rate of 0.0004, decreasing
by 2% every 10000 iterations. For all of the experiments, we save
the model giving the best validation EER value on a small subset of
the labeled dataset.

The pretraining is conducted on deidentifed speech dialogues.
The dataset is composed of 927,000 dialogues, comprising about
1800 hour of speech data. Since the number of dialogues is large,
the chance of having multiple dialogues from the same speaker is
very low per batch. As a dialogue contains at least two customer
utterances, we form each batch by collecting two utterances from N
different dialogues. We conduct our experiments using three differ-
ent loss functions: GE2E, all-versus-all, and angular prototypical.
Moreover, in order to investigate the effect of the rejection mecha-
nism we conduct a number of experiments with varying batch sizes.

The evaluation dataset is constructed by first randomly sampling
de-identified utterances from a year’s traffic. Then each sampled ut-
terance and the enrollment data of speakers are sent to multiple an-
notators to obtain ground-truth labels independently. To reduce an-
notation errors, we select utterances that have consistent annotation
labels for the final evaluation dataset.

3.1. Model Performance with Rejection Mechanism

We first investigate how the rejection mechanism helps us learn from
the noisy unlabeled dialogue data. Table 2a reports relative EER
improvements by taking a batch size of 32, without using rejection,
as a baseline.

There are two observations. First, the rejection mechanism helps
improve EER performance on all three loss functions and different
batch sizes. For example, when all-versus-all loss is applied and the
batch size is 32, we observe 3.76% relative EER improvement. This
demonstrates the effectiveness of the rejection mechanism, helping
the model focus on clean dialogues rather than noisy ones. Sec-
ond, a large batch size also contributes to better EER performance,
especially when the rejection mechanism is applied. For example,
when all-versus-all loss is applied, the EER improves by 8.2% by
increasing the batch size from 32 to 256. It improves by 19.0% if the
rejection mechanism is involved. A large batch involves utterances
from more dialogues and forces the model to learn harder tasks, dis-
tinguishing more speakers in a batch. This results in more accurate
speaker recognition.

3.2. Model Performance before Fine-tuning

In this section, we investigate the performance of speaker recogni-
tion without fine-tuning the pretrained models. To compare with
other self-supervised methods, we also pretrain a reconstruction-
based APC model [9], and COLA [20] based on contrastive learn-
ing. As there are several public labeled datasets, we also train a
supervised model based on the VoxCeleb2 dataset [2] to serve as an



Table 2: Pretraining and fine tuning results, our method outperforms all the other pretraining methods significantly over the speaker recogni-
tion task.

(a) Pretraining results. For each loss function, improvements relative
to batch size 32 without rejection are shown.

Loss Batch Size

32 64 128 256

All-vs-All 0.00% +2.91% +6.56% +8.20%
Rejection + All-vs-All +3.76% +7.65% +18.76% +19.00%
A-Proto 0.00% +7.32% +8.52% +12.93%
Rejection + A-proto +7.55% +12.58% +16.76% +25.85%
GE2E 0.00% +3.24% +3.06% +6.36%
Rejection + GE2E +10.64% +17.75% +17.99% +13.83%

(b) Fine-tuning results. For all experiments we take the model trained from scratch
as our baseline and report the relative improvement.

Pretraining Loss Episodes Labeled Dataset Speaker Count

1,024 2,048 4,096 8,192

- GE2E 1000 0.00% 0.00% 0.00% 0.00%

COLA GE2E 300 -8.81% -23.57% -37.07% -44.21%
APC GE2E 300 +24.34% +23.13% +19.48% +15.35%
VoxCeleb2 GE2E 300 +31.38% +25.91% +20.95% +15.61%
Dialogue+AvA (ours) GE2E 300 +40.18% +34.19% +31.10% +27.10%
Dialogue+A-Proto (ours) GE2E 300 +41.28% +34.77% +30.03% +26.57%
Dialogue+GE2E (ours) GE2E 300 +40.12% +32.86% +27.49% +23.42%

Table 3: Comparison of pretrained models, our method outperforms
reference model trained on the VoxCeleb2 labeled dataset without
fine-tuning. Its performance is even comparable to fully supervised
models trained on labeled Alexa datasets.

Training Data Method type Loss EER

Alexa Dialogue Self-supervised COLA -129.56%
Alexa Dialogue Self-supervised APC -108.32%
VoxCeleb2 Supervised GE2E 0%
Alexa (1024 spk) Supervised GE2E +12.75%
Alexa (2048 spk) Supervised GE2E +27.11%
Alexa (4096 spk) Supervised GE2E +34.79%
Alexa (8192 spk) Supervised GE2E +39.17%
Alexa Dialogue Self-supervised AvA +28.81%
Alexa Dialogue Self-supervised A-Proto +30.84%
Alexa Dialogue Self-supervised GE2E +28.49%

additional pretrained model. Here the supervised pretrained model
based on the VoxCeleb2 dataset serves as the reference. In addition,
we further train four fully supervised models based on labeled Alexa
datasets with varying number of speakers.

We highlight three observations based on Table 3. First, we note
that the pretrained models COLA and APC are worse than the su-
pervised model trained on the VoxCeleb2 dataset. These two meth-
ods aim to learn general audio features and they strongly depend on
fine-tuning steps in order to achieve comparable performance for a
downstream task. Therefore, they perform poorly on speaker recog-
nition task without fine-tuning. Second, the proposed model and its
variants consistently outperform the reference model trained on the
VoxCeleb2 labeled dataset, with EER reduced by as much as 30.84%
relative. This clearly demonstrates the effectiveness of the proposed
model in exploiting implicit speaker information in human-machine
dialogues. The utilization of Alexa human-machine dialogues helps
us overcome the domain mismatch between Alexa users and speech
from other sources, such as the YouTube excerpts assembled in Vox-
Celeb. Third, the proposed model achieves EER reductions compa-
rable to the models trained from scratch on Alexa labeled datasets.
For example, our best performing model achieves 30.84% EER re-
duction while the fully supervised model trained on the Alexa la-
beled 4096-speaker dataset achieves 34.79% reduction. This shows
that the proposed model trained with unlabeled dialogue data is ef-
fective in learning speaker identity features.

3.3. Model Performance after Fine-tuning

We fine-tune the pretrained network on different labeled Alexa
datasets with varying number of speakers, where the total utter-
ance duration for a speaker is around 150 seconds on average. All

fine-tuning results based on the various pretrained models are sum-
marized in Table 2b. Here the four models trained from scratch with
1024, 2048, 4096, and 8192 labeled speakers serve as the reference
baselines. Due to limited space, we show the fine-tuned model
performance for GE2E loss only.

There are four key observations. First, the pretrained COLA
model is not effective at learning speaker identities on the dialogue
data, as we observe performance drop compared to the model trained
from scratch for all four fine-tuning datasets. The utterances in dia-
logues are very short (one to two seconds duration). COLA further
separates each utterance into two segments in order to form positive
instances. Moreover, the background environment tends to be iden-
tical within the same utterance. Without massive and effective data
augmentations, COLA tends to perform poorly on speaker recogni-
tion tasks.

Second, we notice that the pretrained APC model [21] helps im-
prove the recognition performance with fine-tuning. For example,
compared with the model trained with 1024 speakers from scratch,
fine-tuning the APC model with the same labeled dataset improves
EER by 24.34%.

Third, fine-tuning the supervised model pretrained on the Vox-
Celeb2 dataset also helps improve the EER performance, in spite of
the domain mismatch between VoxCeleb2 (YouTube recordings) and
Alexa traffic. We observe 31.38% relative EER improvement when
the model is fine-tuned with 1,024 speakers.

Fourth, the proposed method achieves the largest relative EER
improvements on all four fine-tuning datasets compared to COLA,
APC, and the supervised model trained on the VoxCeleb2 dataset.
The best results are highlighted in bold in Table 2b. This demon-
strates the superiority of the proposed method for our speaker recog-
nition scenario, learning to distinguish speakers by selectively learn-
ing from the unlabeled human-machine dialogues.

4. CONCLUSIONS

We present a self-supervised learning method for speaker recogni-
tion tasks designed to exploit implicit speaker identity information
in unlabeled human-machine dialogues. We propose an effective
soft rejection mechanism to deal with dialogues containing multi-
ple speakers. Experiments on deidentified smart-speaker produc-
tion data show that the proposed algorithm is effective at handling
unsupervised speaker information, giving performance comparable
to supervised models. When used for model pretraining before su-
pervised training, our method reduces EER by up to 41% relative,
compared to no pretraining, and is superior to other self-supervised
pretraining methods, as well as to pretraining on a large labeled (but
domain-mismatched) dataset.
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