OPTIMIZING LATENT SPACE DIRECTIONS FOR GAN-BASED LOCAL IMAGE EDITING
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Fig. 1: Examples of localized edits performed by our method on GAN-generated images. The images to the left and right of
the middle one are results of moving the latent code in directions discovered by our method to edit each semantic part.

ABSTRACT

Generative Adversarial Network (GAN) based localized im-
age editing can suffer from ambiguity between semantic at-
tributes. We thus present a novel objective function to eval-
uate the locality of an image edit. By introducing the super-
vision from a pre-trained segmentation network and optimiz-
ing the objective function, our framework, called Locally Ef-
fective Latent Space Direction (LELSD), is applicable to any
dataset and GAN architecture. Our method is also compu-
tationally fast and exhibits a high extent of disentanglement,
which allows users to interactively perform a sequence of ed-
its on an image. Our experiments on both GAN-generated and
real images qualitatively demonstrate the high quality and ad-
vantages of our method.

Index Terms— GANSs, Latent Space Directions, Local
Image Editing, Semantic Attribute Editing, StyleGAN

1. INTRODUCTION

Generative Adversarial Networks, like StyleGAN [1, 2]
and BigGAN [3], are capable of generating diverse high-
resolution images, sometimes indistinguishable from real
photos. In addition, substantial semantic meaning has been
found in the latent space of trained GANs, which makes

high-level semantic image editing possible. Semantic image
editing using GANSs [4] has found a broad range of applica-
tions in Digital Art [5], Fashion [6], Interior Design [7], and
Face Editing [8].

Several recent works control the semantics of the GAN-
generated images by tweaking the latent code to perform
global [9, 10, 11, 12, 13, 14] or localized [7, 15, 16, 17]
image editing. Although a lot of progress has been made in
global image editing, it remains challenging to disentangle
the semantic attributes and thus control the local semantics of
the image. Therefore, in this paper, we specifically focus on
localized semantic image editing, where the goal is to control
one semantic attribute of the image without changing other
image parts.

State-of-the-art methods for finding semantically local-
ized latent space directions rely on the first-order Taylor ex-
pansion of the generator network [16, 17], and thus assume
a linear relation between the latent code and the generated
image. Since this assumption is only valid in a close prox-
imity to the original latent code, these methods [16, 17] are
limited in the range of local editing they can achieve. Mean-
while, [16] proposes a method to achieve disentanglement by
exhaustively searching the latent space of StyleGAN [1, 2],
and consequently cannot be applied to other GAN architec-
tures. However, we are specifically interested in designing a
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Table 1: Comparison of GAN-based image editing algo-
rithms by their characteristics. (A) Works on any Dataset,
(B) Does not need test-time optimization, (C) Works on any
GAN architecture, (D) Can perform the edit using a single im-
age, (E) Allows global semantic editing, (F) Allows localized
semantic editing, (G) Allows editing any object in the image.

framework which is not only agnostic to the GAN architec-
ture, but also is able to effectively disentangle the semantic
attributes. To this end, we propose Locally Effective Latent
Space Directions (LELSD), a framework to find latent space
directions that affect local regions of the output image. We
introduce a novel objective function to evaluate the localiza-
tion and disentanglement of an image edit by incorporating
supervision from a pre-trained semantic segmentation model.
Note that, the supervision could also come from unsupervised
[15] or weakly-supervised [ 18] models that use the intermedi-
ate featuremaps of the generator network to achieve semantic
segmentation. As a result, our method is not limited to any
specific dataset. Figure 1 shows some of the semantic edits
that our method can perform. Since we apply optimization
instead of exhaustive search, our training time is three orders
of magnitude faster than [16]. Meanwhile, unlike [17] we do
not perform test-time optimization and thus allow interactive
image editing.

2. RELATED WORKS

Table 1 summarizes the strengths and weaknesses of of dif-
ferent GAN-based image editing methods. Some works use
an unsupervised approach to discover meaningful latent space
directions, and then manually attribute a semantic meaning to
each of the found directions [10, 11, 12, 19]. However, the
discovered directions are semantically entangled and usually
change more than one attribute simultaneously. Hence, they
are not suitable for localized image editing.

To solve this problem, [9, 13, 14] use an external super-
vision and find latent space directions that yield the desired
change in the generated images. This is done by finding the
latent space direction that maximizes a designed objective
function.

There are two distinct approaches to GAN-based local-
ized semantic image editing: 1) Latent Space Traversal, and
2) Image Composition. In the former, the goal is to discover

latent space directions that yield localized changes in the out-
put image. The later aims to combine different parts from two
images to achieve localized editing, e.g., transferring the nose
from one face image to another. Our method falls in the first
category. The disadvantage of the Image Composition meth-
ods is that they require a second image to transfer the parts
from (See Table 1, Column D). In this paper we thus focus
on the Latent Space Traversal methods as they can perform
single-image editing, which is more user-friendly.

InterFaceGAN [9] finds latent space directions that max-
imally change the score of a pre-trained SVM classifier for
face attributes, and therefore is only applicable on face im-
ages. On the other hand, [16, 17] use the gradient of the out-
put image w.r.t the latent code to find subspaces of the latent
code that highly correlate with local regions in the generated
image. Wu et al. [16] use a pretrained semantic segmentation
network to find channels in StyleGAN’s style code that have
a high overlap with a semantic category, e.g., eyes. Zhu et al
[17] perform test-time optimization to find latent space direc-
tions that mostly affect the regions of the image outline in the
user’s query. The upper part of Table 1 compares the existing
Latent Space Traversal methods in the literature.

Similar to [7, 16, 22], we use the supervision from a pre-
trained semantic segmentation network, and propose a novel
scoring function that encourages the latent space directions
that mainly affect the desired semantic part to edit, e.g., eyes
in a face image. Meanwhile, we allow both coarse and fine-
grained semantic changes by adopting the layer-wise editing
approach of [10] for both style-based GANs and BigGAN.
GAN Inversion is complementary to our method and advance-
ment in GAN Inversion research [23, 24] also enhances the
quality of semantic editing of real photos when combined
with our method.

3. METHOD

Figure 2 provides an overview of our method. The genera-
tor network G/(.) in a GAN generates an image starting from
a latent code w € Q, ie. x = G(w) = f(h(w)) where
r = h(w) is a tensor representing the activation of an inter-
mediate layer in the network. The latent space (2 can be any
of Z, W, W+, S for the StyleGAN generator as in [16], and
Z, Z+ for BigGAN generator as in [10]. Semantic editing of
an image is done by moving its latent code along a specific
direction

x“%it(q) = f(r%*(u)) = G(w + an) (1)

where « controls the intensity of the change, and the latent
direction u determines the semantic of the edit.

Our goal is to find an editing direction u. that mostly
changes parts of the generated image corresponding to a bi-
nary mask given by a pretrained semantic segmentation model
s.(x) where c indicates the desired object to edit in the image.
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Fig. 2: Scheme of our method. The green boxes indicate the pretrained generator network and the yellow box shows the
pretrained semantic segmentation model. We draw random samples from the latent space {2 and optimize the latent space

direction to maximize the localization score.

Based on this, we can write the localization score as

{ , )
Ei,j S~C(X, Xedzt) ® |I‘ _ pedit (u)|2
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LS(u) = @)

where i, j iterate over the spatial dimensions and s{(x7 xedit)
is the average of the two semantic segmentation masks down-
sampled to the resolution of the corresponding layer. This
objective function measures the proportion of the change in
the featuremap that happens inside the semantic segmenta-
tion mask. Our final objective function is calculated by sim-
ply summing up the localization scores for all intermediate
layers in the generator network. Unlike [17] that only aims to
achieve localized change in the generated image, we also en-
courage the intermediate featuremaps to only change locally.
This allows us to achieve a larger variety of edits than [17].
For example, we can change both hairstyle and hair color,
while [17] cannot manipulate hairstyle.

4. EXPERIMENTS

For the pretrained semantic segmentation model, we use
Face-BiSeNet [25] for face/portrait images and DeepLabV3
[26] for other images. We use the Adam optimizer to find a
latent space direction that maximizes the localization score
defined in Equation (2)'. We train on 800 randomly sampled
latent codes with a batch size of 4, starting from a learning
rate of 0.001 and halving it every 50 steps. Optimizing a
latent space direction for each semantic part takes approxi-
mately two minutes on a single Tesla V100 GPU. We observe

'Our code can be found at https://github.com/IVRL/LELSD

that our method is robust to the choice of the mask aggrega-
tion method in Equation (2) and works as well with the union
or the intersection of the two masks.

4.1. Finding multiple directions

In order to find two or more distinct directions for editing the
same semantic part such as hair, we add R(uy, ...,u;) =
’71||Corr(u1, .., ug) — Ix||r as a regularization term to our
objective function, where Corr(.) is the correlation matrix of
a set of vectors, ||.||r is the Frobenius Norm, and I is the
K x K identity matrix. Our final objective can thus be written
as

J(uag, .. ug) = ZLS(uk) +cR(uy, ...,ur) (3
k

where c is the regularization coefficient. The added regular-
ization term encourages the editing directions to be mutually
perpendicular, and carry distinct semantics as can be seen in
Figure 3. We linearly increase the number of training samples
w.r.t i and alternate between each uy, during the optimization
process.

4.2. Comparison with First-Order methods

Both [16, 17] rely on the first-order Taylor expansion of the
generator network and assume a linear relationship between
the generated image and the latent code. This causes them
to perform poorly as the editing strength « increases. Since
a in Equation (1) has a different scale for each GAN-based
image editing method, we use the LPIPS distance [27] for the
comparison. For each method we find the value of « such



Fig. 3: Visualization of two latent space directions found by
our method for editing hairstyle. Linearly combining dif-
ferent directions gives limitless image editing possibilities to
users.

that LPTPS(x,x°%) = d, and show that for higher values
of d where the linearity assumption is not valid, our method
outperforms [16]. Note that there are two values of « that
yield the same LPIPS distance d, where one is positive and the
other one is negative. Figure 4 compares the edits performed
on mouth and hair by our method and StyleSpace [16], for
different values of editing strength. As d and subsequently
absolute value of «v increase, our method performs coherently
while StyleSpace distorts the semantics of the image.

4.3. Editing Real Images

Combined with a GAN Inversion model, our method allows
editing real images. We use ede [24] trained on StyleGAN2
FFHQ to project real face photos into the latent space of
the StyleGAN. More importantly, we can perform sequential
editing by simply adding up the discovered latent space di-
rections for each semantic. Figure 5 shows a series of edits
applied to the inversion of real photos. As can be seen, the
semantics of the edits are consistent across different images.
The quality of the GAN inversion is beyond the scope of this

paper.

4.4. Performance Comparison

Interactiveness and performance are two very important fac-
tors in the image editing experience. The method in [17]
requires test-time optimization and hence is not interactive.
Although the approach of [16] allows interactive editing, it
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first-order approximation of the generator network is only
valid in a close proximity of the original latent code. Hence,
gradient-based methods like StyleSpace [16] perform poorly
as the editing strength increases. The d in the figure shows
the LPIPS distance between the edited and original images.

Original Inverted + Hair +Eyes +Lipstick

Fig. 5: Sequential editing applied to real images. The edits
are semantically consistent between different images and each
edit only changes the desired part without affecting previous
changes.

requires a lot of training time as it needs to separately back-
propagate through all 6080 channels in the style code of the
StyleGAN. As we use the same number of training samples as
[16], we estimate that our method is three orders of magnitude
faster than [16].

5. CONCLUSION

In this work, we have presented LELSD, our computation-
ally friendly framework that uses the supervision from a pre-
trained semantic segmentation network to maximize a novel
objective function that encourages local image edits and can
be applied to any GAN architecture and dataset. Our exper-
iments in different setting qualitatively show the advantage
of our method, especially in the extent of disentanglement
achieved between local attributes.
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