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ABSTRACT
In this paper, a novel multi-head multi-layer perceptron
(MLP) structure is presented for implicit neural represen-
tation (INR). Since conventional rectified linear unit (ReLU)
networks are shown to exhibit spectral bias towards learning
low-frequency features of the signal, we aim at mitigating
this defect by taking advantage of local structure of the sig-
nals. To be more specific, an MLP is used to capture the
global features of the underlying generator function of the
desired signal. Then, several heads are utilized to recon-
struct disjoint local features of the signal, and to reduce
the computational complexity, sparse layers are deployed
for attaching heads to the body. Through various experi-
ments, we show that the proposed model does not suffer
from the special bias of conventional ReLU networks and
has superior generalization capabilities. Finally, simula-
tion results confirm that the proposed multi-head structure
outperforms existing INR methods with considerably less
computational cost. The source code is available at https:
//github.com/AlirezaMorsali/MH-RELU-INR

Index Terms— Implicit neural representation, multi-head
MLP, ReLU network, spectral bias, multi-layer perceptron

1. INTRODUCTION

Recently, there has been a considerable interest in implicit
neural representation (INR) for parameterizing various kinds
of signals [1–4]. For example, images and audio signals are
conventionally stored as discrete grids of pixels and discrete
samples of amplitudes, respectively [5,6]. On the other hand,
with INR, the goal is to find a continuous generator function
for the target signal [7–14]. In particular, for images as the
target signal of INR, the pixel coordinates are mapped to RGB
color values.

Multi-layer perceptron (MLP) networks and, in particular,
deep neural networks (DNN) are shown to have an unprece-
dented capability in learning various input-output transforma-
tions (even random input-output mappings) with high accu-
racy [15, 16]. One of the widely used activation functions
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in DNNs is rectified linear unit (ReLU), which brings con-
siderable advantages, such as overcoming gradient vanishing
and facilitating the learning process. Furthermore, it is proven
that ReLU neural networks can express any continuous piece-
wise linear function, which forms bounded convex polytopes.
Moreover, every continuous piece-wise linear function can be
defined by a specific ReLU neural network [17–19]. As a re-
sult, ReLU networks are known as universal approximators.
Consequently, ReLU networks could be the prime candidate
for INR. However, in [20], the Fourier transform of ReLU
neural networks reveals a spectral bias in such networks, i.e.,
ReLU networks tend to learn lower frequencies faster.

It is shown that an increase in the complexity of the data
manifold shapes and low data dimension eases the learning of
the high frequencies [2]. Therefore, authors in [2] proposed
manipulating the input data by a sine kernel method to fa-
cilitate learning high-frequency signals. Positional encoding
relieves the spectral bias by kernel regression module, which
maps a low-dimension input to a high-dimension one through
a set of sine and cosine functions with different frequencies.
Furthermore, the use of periodic activation functions for INR
is presented in [3], which allows the model (namely, SIREN)
to learn high-frequency data more effectively. Nevertheless, a
major drawback of the aforementioned methods is the compu-
tational cost of such networks during both training and infer-
ence. Moreover, in case of SIREN, due to the use of periodic
activation function, the network is highly sensitive to initial-
ization and can exhibit unstable behaviours for different types
of signals.

In this paper, we present an efficient multi-head INR net-
work structure which is capable of learning high-frequency
signals accurately with considerably lower computational
cost compared to existing methods. The target signals of
INR, for instance image and audio, usually exhibit local
structure and neighbourhood dependencies. By exploiting
this property of the target signals, we show that ReLU net-
works can be boosted to be less partial to low-frequency
components during the training phase. We introduce a multi-
head network architecture in which the body learns the global
features of the signal and the output layers, consists of several
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heads, reconstruct separate parts of the signal, and learn local
features of the signal. This approach has several promising
advantages: I. The network architecture can be tailored to
learn high-frequency components without incorporating pe-
riodic functions. II. The number of floating point operations
(FLOPs) required to generate a signal decreases significantly
as the number of heads of the model increases. III. The gen-
eralization ability of the model intensifies in the multi-head
models compared to the base model.

2. PROBLEM FORMULATION

In this work, we focus on grayscale images for INR. How-
ever, the proposed method can be generalized to other multi-
dimensional signals. For a given Nx × Ny grayscale image,
i.e., I ∈ RNx×Ny , the goal of INR is to find an underly-
ing function Φ : R2 → R that maps pixel coordinates r
and c into the pixel value I[r, c] for r = 1, 2, . . . , Nx and
c = 1, 2, . . . , Ny where I[r, c] denote the grayscale value of
the I on the rth row and the cth column. Since the function Φ
is continuous, we only have its values at discrete points, i.e.,

Φ
(
x(r), y(c)

)
= I[r, c] (1)

where x(r) = 2 r−1
Nx−1 − 1, y(c) = 2 c−1

Ny−1 − 1. Note that
any arbitrary interval can be selected as the domain of the
function; however, for simplicity x, y ∈ [−1, 1] is usually
chosen.

Existing works in the literature [2, 3] use an MLP to ap-
proximate Φ(x, y) and train the MLP using the pixel coordi-
nate and the corresponding pixel values as the dataset:

D =

{((
x(r), y(c)

)
, I[r, c]

)}Nx,Ny

r,c=1

.

3. PROPOSED METHOD

In order to alleviate the spectral bias of the ReLU networks,
we take advantage of the local structure of the target signal
by dividing the input domain x and y into Hx and Hy equal
intervals, respectively, whereHx andHy are non-negative in-
tegers. Let us further assume Nx and Ny are divisible by Hx

and Hy , respectively. Consequently, the image I can be di-
vided into M = HxHy equal grid cells, each of which is of
size N̂x × N̂y where N̂x = Nx

Hx
and N̂y =

Ny

Hy
. Therefore,

for r̂ = 1, 2, . . . , N̂x and ĉ = 1, 2, . . . , N̂y , we can further
explicitly write the image cells as

Il,k[r̂, ĉ] = I[N̂h(l − 1) + r̂, N̂w(k − 1) + ĉ] (2)

where l = 1, 2, . . . ,Hx and k = 1, 2, . . . ,Hy .
Consequently, the INR of a given image I is broken down

into finding M functions. Thus, instead of having a generator
function Φ(x, y) for the whole image I, we use M functions
φl,k(x̂, ŷ) for the corresponding cell of the image Il,k, i.e.,

φl,k
(
x̂(r̂), ŷ(ĉ)

)
= Il,k[r̂, ĉ] (3)

where x̂(r̂) = 2((r̂− 1)/Nx)− 1, ŷ(ĉ) = 2((ĉ− 1)/Ny)− 1.
However, training M MLPs is not efficient. Moreover,

the desired signals (images in this case) usually contain global
features which can be shared by all M functions. Motivated
by this fact, we use a function (as body) to produce global fea-
tures denoted by ψ(x̂, ŷ). This function, in essence, behaves
as an embedding that maps coordinates to a high-dimensional
space. Subsequently, M disjoint rendering functions τl,k(·)
use these mapped coordinates to reconstruct the details of
each cell of the image. We can therefore write:

φl,k(x̂, ŷ) = τl,k(ψ(x̂, ŷ)). (4)

To find such functions via training, we can write the fol-
lowing optimization problem:

min
τl,k(),ψ()

N̂h∑
r̂=1

N̂w∑
ĉ=1

Hx∑
l=1

Hy∑
k=1

(
τl,k

(
ψ
(
x̂(r̂), ŷ(ĉ)

))
−Il,k[r̂, ĉ]

)2

.

(5)

3.1. Network Architecture

Here, we take advantage of expressive power of MLPs to ap-
proximate the rendering functions τl,k(·) as well as the body
function ψ(x̂, ŷ). In particular, we propose a multi-head im-
plicit neural representation network consisting of two parts,
namely, the body and the rendering heads. The body is a reg-
ular MLP with ReLU activation function. While, the render-
ing networks are a special sparse layer with multiple outputs.
Fig. 1 illustrates the structure of the proposed network, which
is explained below in details.

3.1.1. Body

A 4-layer MLP with ReLU activation function is used as the
body to approximate ψ(x̂, ŷ). This MLP takes the normalized
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Fig. 2: Perlin noise
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Fig. 3: Generalization ability of the proposed method in different
numbers of heads

coordinates of a pixel and creates an intermediate vector that
embeds the coordinate into high-dimensional space that is fed
into the rendering networks.

3.1.2. Head

One neuron is used for each rendering head τl,k(·) to approx-
imate the pixel values of the corresponding cell of the image.
The main advantage of using multiple heads to reconstruct
different parts is the ability of the network to reconstruct sev-
eral pixels in each forward pass, which leads to a significant
reduction in model computations to reconstruct the whole im-
age.

Alternatively, all of the single neurons can be considered
as a fully connected layer, namely, the rendering multi-head
layer, which is attached to the body network. The main is-
sue with a fully-connected rendering multi-head network is
the the large number of required parameters, which is propor-
tional to the number of heads connected to the model body.
In particular, the number of parameters grows significantly
larger as the number of heads increase. For example, if 2562

heads are used for a 256 × 256 grayscale image and the last
layer of the model body has 256 neurons, then approximately
16.7 million (M) parameters are required.

To solve the problem, we use a sparse layer instead of
the fully-connected one. In the sparse layer, the number of
trainable parameters is significantly reduced due to omission
of most of the connections with the previous layer. Let us
denote the number of connections of each neuron with the
previous layer by α. Indeed, the minimum value of α is 1,
and by increasing this parameter to the number of neurons in
the previous layer, the sparse layer becomes a fully-connected
layer.
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Fig. 4: Spectral bias in the proposed method with different number
of heads

3.2. Model Configuration

To further analyse the model and tuning the hyper-parameters,
a base body network with 4-hidden layers and 256 neurons
for each layer is used. Each rendering head (output neuron)
is connected to the body network with a partially-connected
linear layer (sparse layer) that has only α connections to the
output layer of the body. The active connections are randomly
selected with a uniform distribution at the beginning of the
training and do not change. For all the experiments and simu-
lations, the weights and biases of the networks are initialized
with uniform distribution, and training is performed for 2000
epochs.

3.3. Spectral Bias

Here, we present experimental results to show the effect of
number of heads on the spectral bias of the model. Specifi-
cally, we use 2D Perlin noise [21] as the target image. Per-
lin noise is a pseudo-random pattern of float values generated
across an N-dimensional plane which allows for controlled
high-frequency features in each dimension using a parameter,
namely, Octave. In this experiment, Perlin noises with differ-
ent frequencies are generated in two dimensions with a size
of 256× 256, shown in Fig. 2.

We trained the proposed model with the different num-
ber of heads on this set of synthetic noises. The base model
presented in Subsection 3.2 is used for this experiment with
α = 32. In Fig. 4, peak signal-to-noise ratio (PSNR) of the
reconstructed image with different network configurations for
various Octaves of Perline noise are presented.

Note that, the higher the Octave the higher the frequency
of the target image. The solid blue curve which corresponds
to the network with 1 head (which is in essence the regular
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ReLU network) clearly illustrates the spectral bias of such
ReLU networks. However, as the number of heads increase,
the model can more effectively reconstruct higher frequen-
cies. In particular, by increasing the number of heads, each
rendering unit (head) reconstructs a smaller area of the image.
The amount of variation in the neighbouring pixels decreases
dramatically with decreasing size of each cell, and in practice,
each head reconstructs a low-frequency signal.

Since each rendering head represents a hyperplane, if the
number of model heads is equal to the number of image pix-
els, the hyperplane associated with each head can approxi-
mate that single pixel perfectly. In fact, for the case of 2562

where each head only reconstructs one pixel and the whole
image is reconstructed with one forward pass, the error-free
approximation of the network is shown in Fig. 4 regardless of
frequency variations.

3.4. Generalization ability

In INR tasks, only memorizing the training data is not enough.
Specifically, in addition to the ability of the proposed model
to alleviate the frequency bias of ReLU networks, the gen-
eralization ability must be also considered. For example, in
neural radiance fields (NERF) [4], continuous scenes are rep-
resented as 5D neural radiance fields, parameterized as MLP
networks; if the model fails to create new scenes, it becomes
practically useless.

Consequently, we presented an experiment to evaluate the
generalization ability of the proposed model. For this ex-
periment, we first resizes a 512 × 512 grayscale image to a
256 × 256 image. Then, the proposed model with different
heads is trained on the resized image. Finally, the trained
model’s performance is evaluated on the original 512 × 512
image. Fig. 3 shows the results of this experiment. We can
observe that although the model’s performance on the train-
ing data improves by increasing the number of heads, from

the number of 642 heads on-wards, we encounter a decrease
in the generalization ability. The base model used in this ex-
periment has 2562 heads and the α = 32. Consequently, in
the reset of the paper, we focus on a model with 642 as it
exhibits the best generalization characteristics.

4. EXPERIMENTAL RESULTS

In this section, in order to compare our method with the state-
of-the-art methods, we investigate the accuracy of different
models with the same number of parameters. We also report
number of floating point operations (FLOPs) for training each
model. Fig. 5 illustrates the reconstructed image of the pro-
posed model as well as SIREN [3] and Fourier feature [2]. To
ensure a fair comparison, SIREN and Fourier feature are con-
figured (the best possible configurations are selected based
on [2, 3]) to have the same number of parameter as the multi-
head network with α = 64 and 256, i.e., 0.464 and 1.250 mil-
lion, respectively. With 642 heads, the proposed model with
0.464M parameters requires 3347 times fewer FLOPs com-
pared to competitors to reconstruct the whole image, which
shows its outstanding performance. It should be noted that
by increasing the model’s size from 0.464M to 1.250M , the
reduction of the required FLOPs becomes more pronounced
(4095 times).

5. CONCLUSION

In this paper, a novel multi-head INR was proposed to im-
prove the spectral bias of ReLU networks. In particular,
tackle this issue by exporting the local structure of the sig-
nals. Specifically, an MLP is used as the body to capture the
global features and several heads are used to reconstruct local
features. The proposed structure requires considerably less
computational cost while achieving superior or similar results
to the state-of-the-art methods.
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