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ABSTRACT

This paper studies a practically meaningful ship detection
problem from synthetic aperture radar (SAR) images by the
neural network. We broadly extract different types of SAR
image features and raise the intriguing question that whether
these extracted features are beneficial to (1) suppress data
variations (e.g., complex land-sea backgrounds, scattered
noise) of real-world SAR images, and (2) enhance the fea-
tures of ships that are small objects and have different aspect
(length-width) ratios, therefore resulting in the improvement
of ship detection. To answer this question, we propose a
SAR-ship detection neural network (call SAR-ShipNet for
short), by newly developing Bidirectional Coordinate Atten-
tion (BCA) and Multi-resolution Feature Fusion (MRF) based
on CenterNet. Moreover, considering the varying length-
width ratio of arbitrary ships, we adopt elliptical Gaussian
probability distribution in CenterNet to improve the perfor-
mance of base detector models. Experimental results on
the public SAR-Ship dataset show that our SAR-ShipNet
achieves competitive advantages in both speed and accuracy.

Index Terms— SAR-ShipNet, Ship detection, Bidirec-
tional coordinate attention, Multi-resolution feature fusion

1. INTRODUCTION

Synthetic Aperture Radar (SAR) is an active microwave
imaging sensor with long-distance observation capability in
all-day and all-weather conditions and has good adaptability
to monitoring the ocean. In ocean SAR images, ships are
the most critical yet small targets to detect when developing a
SAR search and tracking system. SAR-Ship detection aims to
find the pre-defined ship objects in a given SAR scene by gen-
erating accurate 2D bounding boxes to locate them. Although
many efforts have been explored to the SAR-ship detection
task, it is still not completely and effectively solved, due to
the non-trivial SAR imaging mechanism, where various ships
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Fig. 1. Ships are often small targets and submerged in ex-
tremely complicated backgrounds. Meanwhile, SAR images
inevitably contain speckle noise. These adverse factors heav-
ily hinder accurate SAR-Ship detection. When designing a
neural network model, it is natural to suppress the extracted
features from the adverse factors of surroundings while en-
hancing the beneficial features from the ship targets. The pro-
posed SAR-ShipNet can deal with the aforementioned prob-
lems, therefore leading to better detection results than SOTAs.

are very small and blurred, and even submerged in extremely
complicated backgrounds.

Traditional SAR target detection methods are mainly
based on contrast information, geometric, texture features,
and statistics. They are implemented by the hand-crafted
feature extractors and classifiers. However, these methods are
not only time-consuming but also lead to inaccurate detection
results in complicated sea-and-land scenarios. Constant false
alarm rate detectors (CFAR) [1], is one of the most commonly
used techniques. [2] considers practical application situation
and tries to strike a good balance between estimation accuracy
and speed. [3, 4] introduce a bilateral CFAR algorithm for
ship detection and reduced the influence of synthetic aperture
radar ambiguity and ocean clutter.

With the development of deep learning, CNN-based de-
tection models have emerged in multitude, which can auto-

ar
X

iv
:2

20
3.

15
48

0v
1 

 [
cs

.C
V

] 
 2

9 
M

ar
 2

02
2



Fig. 2. Overview of SAR-ShipNet structure. SAR-ShipNet
is composed of three modules: the feature extraction network
that the backbone adds the attention mechanism, feature fu-
sion: MRF, and elliptic gauss.

matically extract features and get rid of the shortcomings of
manually designed features [5] for SAR-ship detection. Thus,
many researchers begin to use deep learning for SAR ship de-
tection. [6] integrates the feature pyramid networks with the
convolutional block attention module. [7] introduces signifi-
cant information into the network so that the detector can pay
more attention to the object region. [8] proposes an anchor-
free network for ship detection, using a balancing pyramid
composed of attention-guided and using different levels of
features to generate appropriate pyramids. [9] improves
CenterNet++ and enhanced ship feature through multi-scale
feature fusion and head enhancement. These detectors have
achieved great results in SAR-ship detection, there are still
many problems with these detectors. These problems include
misclassification caused by the high similarity of ships and
islands in the complex sea and land scenes, omissions in the
detection of small target ships under long-distance satellite
observation, and scattering noise in the SAR imaging process.

Figure 1 shows these three types of SAR-ship detection
challenges, where the local regions similar to small ship tar-
gets spread over the whole background. Thus, exploring
the interaction information amongst SAR image features in
large-range dependencies to amplify the difference between
the ship target and its background is crucial for robust de-
tection. However, cutting-edge learning models are limited
by the locality of CNNs, which behave poorly to capture
large-range dependencies.

To solve these challenges, we design a high-speed and
effective detector called SAR-ShipNet. We propose a new
attention mechanism, i.e., bidirectional coordinated attention
(BCA), to solve the effects of complex background noise and
islands on ship detection. Next, we generate high-resolution
feature maps in different feature layers instead of the previous
solution of only generating one feature map. This can solve
the problem of small ship targets and shallow pixels caused by
long-distance detection and scattered noise. Finally, consider-
ing the change of detection effect caused by the aspect ratio of
ships, we adopt an elliptical Gaussian probability distribution
scheme to replace the circular Gaussian probability distribu-

tion scheme in CenterNet, which significantly improves the
detection effect of the detector without any consumption.

2. METHODOLOGY

Motivation. SAR-ship detection encounters many chal-
lenges. Ships in SAR images are small, while backgrounds
are usually complex. As a result, the small ship is easily
submerged in the complex background, with a low Signal-
to-Clutter Ratio (SCR). Besides, the number of ship pixels
is much fewer than background pixels. That means the ship
and background pixels in an image are of extreme imbal-
ance. Meanwhile, SAR images inevitably contain speckle
noise. These factors make SAR-ship detection slightly dif-
ferent from other detection tasks. To develop a high-precision
ship detector, one should suppress the extracted features from
the adverse factors of backgrounds while enhancing the ben-
eficial features from the ship targets themselves. By com-
pletely considering both the adverse and beneficial features of
SAR images with ships in them, we broadly extract different
types of SAR image features, and 1) suppress data variations
(e.g., complex land-sea backgrounds, scattered noise) of SAR
images, and 2) enhance the features of ships that are small ob-
jects and have different aspect (length-width) ratios, therefore
resulting in the improvement of ship detection. We propose
a SAR-ship detection neural network (call SAR-ShipNet for
short), by newly developing Bidirectional Coordinate Atten-
tion (BCA) and Multi-resolution Feature Fusion (MRF) based
on CenterNet. SAR-ShipNet is composed of three modules,
as shown in Figure 2. The first module is the feature extrac-
tion network that a backbone adds the attention mechanism:
BCA. The second module is feature fusion: MRF. The third
module is elliptic Gauss.

2.1. Bidirectional Coordinate Attention

Complicated background islands and other scattered noise
affect the effectiveness of ship detection. Inspired by the co-
ordinate attention mechanism (CA) [10], we propose a Bidi-
rectional Coordinate Attention mechanism (BCA). CA ag-
gregates information in two directions through Avgpooling
and then encodes the generated feature maps into a pair of
direction-aware and position-sensitive attention maps, which
are complementarily applied to the input feature maps to en-
hance the representation of the object of interest. But there is
a lot of noise redundancy in SAR pictures. Only using aver-
age pooling to aggregate information must have noise features
to be extracted. It is necessary to ignore unnecessary redun-
dant noise information in SAR pictures. Max pooling infor-
mation is equally important, thus we propose a BCA mecha-
nism that combines Avg and Max pooling (see Figure 3).



Fig. 3. Bidirectional Coordinate Attention mechanism (BCA
mechanism). ACA uses Avgpooling to aggregate features,
and MCA uses Maxpooling to aggregate features.

BCA is formulated as follows:

fa = δ
(
F1
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avgpool

(
xhc

)
, avgpool (xwc )

])
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yc(i, j) = xc(i, j)× ghc (i)× gwc (j)
(1)
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output (xc(i, j)) = xc(i, j)× ghc (i)× gwc (j)
× zhc (i)× zwc (j)

(2)

where x ∈ RC×W×H is the feature map, c represents the
channel index, avgpool

(
xhc

)
and avgpool (xwc ) represents

the average pooled output of the c-th channel with height
h in the horizontal direction and width w in the vertical di-
rection. [] represents the splicing operation of the feature
map. F1 represents the 1×1 convolution. δ is the non-linear
activation function, fa ∈ R

C
r ×(W+H)×1 is the intermediate

feature. fha ∈ R
C
r ×H×1 and fwa ∈ R

C
r ×W×1are two vectors

obtained by decomposing fa, Fh and Fw are two 1×1 convo-
lutions. σ is the sigmoid activation function. gh ∈ RC×H×1

and gw ∈ RC×W×1 are two attention weights respectively.
yc(i, j) is the feature point output after avgpooling atten-
tion. Similarly, the process of using the maxpooling attention
mechanism is consistent with the avgpooling attention mech-
anism. output (xc(i, j)) is the last output of attention through
BCA. BCA makes full use of the captured position informa-
tion through two different information aggregation methods
so that the region of interest can be accurately captured.

2.2. Multi-resolution Feature Fusion

The Multi-resolution Feature Fusion module (MRF) is
used to enhance the detailed information of small-scale ships
to solve the problem of small ship targets and huge differ-
ences in surface morphology. In the deep network, if only the
last feature layer is used to generate a high-resolution feature
map, it is easy to lose the spatial position information of the

Fig. 4. MRF module. C3, C4, C5 are the feature layers output
by the last three stages of Resnet50, Devconv is the deconvo-
lution operation.

ship, so we propose an MRF module to enhance ship features.
The output of the last three stages of ResNet-50 is defined as
{C3, C4, C5}. The MRF module uses three feature layers
to generate three feature maps of the same size. Figure 4
shows the implementation details of the MRF module. By
deconvolution of {C3, C4, C5} multiple times. Finally, we
merge the three high-resolution feature maps to enhance the
detailed features of the ship. The process can be defined as:

P = dev− 3 (C5) + dev− 2 (C4) + dev− 1 (C3) (3)

where dev−i is the deconvolution [11] operation, i is decon-
volution times. P is the total feature after fusion. After the
feature fusion of the MRF module, it can significantly en-
hance the feature extraction of ships, reduce the detection in-
terference caused by complex backgrounds, and improve the
generalization ability of the model.

2.3. Elliptic Gauss

In the original CenterNet, the center point of the object
needs to be mapped to the heatmap to form a circular Gaus-
sian distribution. This distribution is used to measure the dis-
crete distribution of the center point. For each GT, the key
point p ∈ R2 corresponding to category c, then calculate the
key points after down sampling p̃ =

⌊
p
R

⌋
. CenterNet splat all

ground truth keypoints onto a heatmap Y ∈ [0, 1]
W
R ×

H
R×C

using a Gaussian kernel Yxyc = exp
(
− (x−p̃x)2+(y−p̃y)2

2σ2
p

)
,

where σp is an object size-adaptive standard deviation. The
Gaussian kernel generated by this method is a circular dis-
tribution. The parameter σp in the Gaussian kernel is only
related to the area of GT, and the aspect ratio of GT is not
fully considered. Ships in real life usually have a large aspect
ratio. To fully consider the aspect ratio of GT, we are inspired
by the elliptic Gaussian method in TtfNet [20]. When the key
point p̃ =

⌊
p
R

⌋
is dispersed on the heatmap, the 2D Gaussian

kernel Yxyc is:

Yx,y,c = exp

(
− (x− p̃x)

2

2σ2
x

− (y − p̃y)
2

2σ2
y

)
(4)



Table 1. Experimental results of SAR-ShipNet and other different SAR ship detectors.

Method Backbone SAR-Ship SSDD FPS Parameter Input-size
Precision Recall F1 AP0.5 Precision Recall F1 AP0.5

YOLOV3 [12] DarkNet53 92.62 70.12 80 87.24 90.67 67.61 77 79.06 83 234MB 416×416
YOLOV4 [13] DarkNet53 94.46 70.36 81 88.76 96.94 75.65 85 88.46 70 245MB 416×416
YOLOX [14] DarkNet53 93.65 67.51 78 88.21 90.78 71.36 80 85.31 50 97MB 640×640
SSD300[15] VGG16 87.79 72.48 79 82.90 93.83 33.04 49 74.07 142 91MB 300×300
SSD512 [15] VGG16 87.48 74.58 81 84.42 90.07 55.22 68 70.04 80 92MB 512×512
RetinaNet[16] ResNet50 91.52 73.24 81 88.37 39.34 51.74 45 37.53 49 145MB 600×600
CenterNet[17] ResNet50 94.66 60.02 74 87.44 92.57 59.57 72 78.86 127 124MB 512×512
FR-CNN [18] ResNet50 75.68 70.95 73 75.19 67.51 75 71 71.9 15 108MB 600×600

EfficientDet[19] EfficientNet 89.48 71.77 80 85.20 94.33 39.78 56 68.27 45 15MB 512×512
SAR-ShipNet(ours) ResNet50 94.85 71.31 81 90.20 95.12 76.30 85 89.08 82 134MB 512×512

Table 2. Ablation experiments on the SAR-Ship dataset.
CenterNet MRF EGS Precision Recall F1 AP0.5CA BCA
× × × × 94.66 60.20 74 87.44√

× × × 96.95 51.80 68 88.56
×

√
× × 96.76 57.71 72 89.10

×
√ √

× 97.06 50.19 66 89.40
×

√ √ √
94.85 71.31 81 90.20

where σx = αw
6 , σy = αh

6 , α is a super parameter, w and h
are the width and height of GT respectively.

2.4. Loss Function

Our training loss function consists of three parts:

Loss =
1

Npos

∑
xyc

FL (p̂, p) +
λ1

Npos

∑
i

L1

(
L̂wh, Lwh

)
+

λ2

Npos

∑
i

L1(ŝ, s)

(5)

where p̂ is the confidence of classification prediction, p is the
ground-truth category label, FL is Focal loss[16]. L̂wh are
the width and height of the predicted bounding box, Lwh are
the width and height of the ground-truth bounding box. s is
the offset (σxi, σyi) generated by the center point (xi, yi) of
the down-sampling process, ŝ is the offset predicted value.
Npos is the number of positive samples, λ1 and λ2 are the
weight parameters. We set λ1 = 0.1 and λ2 = 1.

3. EXPERIMENTS

3.1. Experimental Dataset

We directly evaluate the SAR-ShipNet model on the SAR-
Ship [21] and SSDD[22] dataset. The SAR-ship dataset con-
tains ship slices (43819) and the number of ships (59535) and
the size of the all ship slices is fixed at 256×256 pixels. The
SSDD data set has a total of 1160 images and 2456 ships. We
randomly divide the data set into the training set, validation
set, and test set at a ratio of 7:1:2.

3.2. Experimental results

We evaluate our SAR-ShipNet on 4 evaluation metrics
and compare it with other methods. Table 1 shows the quan-

Table 3. SAR-ShipNet test results of different α.
Parameter Precision Recall F1 AP0.5
α = 0.1 96.16 6.12 12 87.40
α = 0.2 97.84 7.2 13 88.16
α = 0.3 98.12 24.38 39 88.81
α = 0.4 97.58 42.11 59 89.48
α = 0.5 95.86 63.12 76 89.80
α = 0.6 97.36 55.82 71 90.03
α = 0.7 96.61 61.58 75 89.85
α = 0.8 94.85 71.31 81 90.20
α = 0.9 95.88 65.2 78 90.16

Circular Gaussian 97.06 50.19 66 89.40

titative results of all the methods in two datasets. Compared
with other detectors SAR-ShipNet achieves the best F1, and
AP on two datasets, indicating that our model has the best
overall performance. This is because SAR-ShipNet uses the
attention mechanism to pay more attention to ship features,
and uses feature fusion to strengthen small targets and fully
consider the aspect ratio of the ship. Experiments show that
our model can achieve the best comprehensive performance
on both the large dataset SARShip and the small dataset
SSDD. Table 2 shows the ablation experimental results. It
can be found that CA, BCA, MRF, and elliptic Gauss can in-
crease the detection performance of the model. In particular,
after adding the attention mechanism, the precision and AP
have been improved, which shows that our model reduces
the misclassification of islands and backgrounds into ships.
Table 3 shows the experimental results of the effect of hyper-
parameter α on SAR-Ship dataset. When α = 0.8, we get the
best AP (90.20).

4. CONCLUSION

In this paper, we propose an effective SAR-ShipNet for
SAR-ship detection. SAR-ShipNet mainly has three mod-
ules: the BCA mechanism, the MRF module, and the elliptic
Gaussian module. BCA mechanism is used to solve the prob-
lem of ship detection in complex backgrounds. It can make
the model pay attention to ship features as much as possible
while ignoring background noise. The MRF module is used
to solve the problems of small ship sizes and shallower pixels
in long-distance observation. Elliptical Gauss fully consid-
ers the influence of ship aspect ratio detection. Experimen-
tal results show that our SAR-ShipNet achieves a competitive
detection performance.
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