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ABSTRACT

Graph-based temporal classification (GTC), a generalized form
of the connectionist temporal classification loss, was recently pro-
posed to improve automatic speech recognition (ASR) systems us-
ing graph-based supervision. For example, GTC was first used to
encode an N-best list of pseudo-label sequences into a graph for
semi-supervised learning. In this paper, we propose an extension
of GTC to model the posteriors of both labels and label transitions
by a neural network, which can be applied to a wider range of tasks.
As an example application, we use the extended GTC (GTC-e) for
the multi-speaker speech recognition task. The transcriptions and
speaker information of multi-speaker speech are represented by a
graph , where the speaker information is associated with the transi-
tions and ASR outputs with the nodes. Using GTC-e, multi-speaker
ASR modelling becomes very similar to single-speaker ASR mod-
eling, in that tokens by multiple speakers are recognized as a sin-
gle merged sequence in chronological order. For evaluation, we
perform experiments on a simulated multi-speaker speech dataset
derived from LibriSpeech, obtaining promising results with perfor-
mance close to classical benchmarks for the task.

Index Terms— CTC, GTC, WFST, end-to-end ASR, multi-
speaker overlapped speech

1. INTRODUCTION

In recent years, dramatic progress has been achieved in automatic
speech recognition (ASR), in particular thanks to the exploration of
neural network architectures that improve the robustness and gen-
eralization ability of ASR models [1–5]. The rise of end-to-end
ASR models has simplified ASR architecture with a single neural
network, with frameworks such as the connectionist temporal clas-
sification (CTC) [6], attention-based encoder-decoder model [7–9],
and the RNN-Transducer model [10].

Graph modeling has traditionally been used in ASR for decades.
For example, in hidden Markov model (HMM) based systems, a
weighted finite-state transducer (WFST) is used to combine sev-
eral modules together including a pronunciation lexicon, context-
dependencies, and a language model (LM) [11, 12]. Recently, re-
searchers proposed to use graph representations in the loss function
for training deep neural networks [13]. In [14], a new loss function,
called graph-based temporal classification (GTC), was proposed as
a generalization of CTC to handle sequence-to-sequence problems.
GTC can take graph-based supervisory information as an input to
describe all possible alignments between an input sequence and an
output sequence, for learning the best possible alignment from the
training data. As an example of application, GTC was used to boost
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Fig. 1. Illustration of a GTC-e graph for multi-speaker ASR. In the
graph, the nodes represent the tokens (words) from the transcrip-
tions. The edges indicate the speaker transitions.

ASR performance via semi-supervised training [15, 16] by using an
N-best list of ASR hypotheses that is converted into a graph rep-
resentation to train an ASR model using unlabeled data. However,
in the original GTC, only posterior probabilities of the ASR labels
are trained, and trainable label transitions are not considered. Ex-
tending GTC to handle label transitions would allow us to model
further information regarding the labels. For example, in a multi-
speaker speech recognition scenario, where some overlap between
the speech signals of multiple speakers is considered, we could use
the transition weights to model speaker predictions that are aligned
with the ASR label predictions at frame level, such that when an
ASR label is predicted we can also detect if it belongs to a specific
speaker. Such a graph is illustrated in Fig. 1.

In the last few years, several multi-speaker end-to-end ASR
models have been proposed. In [17,18], permutation invariant train-
ing (PIT) [19–21] was used to compute the loss by choosing the
hypothesis-reference assignment with minimum loss. In [22], an
attention-based encoder-decoder is trained to generate the hypoth-
esis sequences of different speakers in a predefined order based on
heuristic information, a technique called serialized output training
(SOT). In [23, 24], the model is trained to predict the hypothesis
sequence of one speaker in each iteration while utilizing informa-
tion about the previous speakers’ hypotheses as additional input.
These existing multi-speaker end-to-end ASR models, which have
showed promising results, all share a common characteristic in the
way that the predictions can be divided at the level of a whole ut-
terance for each speaker. For example, in the PIT-based methods,
label sequences for different speakers are supposed to be output at
different output heads, while in the SOT-/conditional-based models,
the prediction of the sequence for a speaker can only start when the
sequence of the previous speaker completes.

In contrast to previous works, in this paper, the multi-speaker
ASR problem is not implicitly regarded as a source separation prob-
lem using separate output layers for each speaker or cascaded pro-
cesses to recognize each speaker one after another. Instead, the pre-
diction of ASR labels of multiple speakers is regarded as a sequence
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of acoustic events irrespective of the source shown as in Fig. 1, and
the belonging to a source is predicted separately to distinguish if an
ASR label was uttered by a given speaker. We propose to use an
extended GTC (GTC-e) loss to accomplish this, which allows us to
train two separate predictions, one for the speakers and one for the
ASR outputs, that are aligned at the frame level. In order to exploit
the speaker predictions efficiently during decoding, we also modify
an existing frame-synchronous beam search algorithm to adapt it to
GTC-e. The proposed model is evaluated on a multi-speaker end-to-
end ASR task based on the LibriMix data, including various degrees
of overlap between speakers. To the best of our knowledge, this is
the first work to address multi-speaker ASR by considering the ASR
outputs of multiple speakers as a sequence of intermingled events
with a chronologically meaningful ordering.

2. EXTENDED GTC (GTC-E)

In this section, we describe the extended GTC loss function. For the
convenience of understanding, we mostly follow the notations in the
previous GTC study [14].

GTC was proposed as a loss function to address sequence-to-
sequence problems. We assume the input of the neural network is
a sequence denoted as X = (x1, . . . , xL), where L stands for the
length. The output is a sequence of length T , Y = (y1, . . . ,yT ),
where yt denotes the posterior probability distribution over an al-
phabet U , and the k-th class’s probability is denoted by ytk. We use
G to refer to a graph constructed from references. Then the GTC
function computes the posterior probability for graph G by summing
over all alignment sequences in G:

p(G|X) =
∑

π∈S(G,T )

p(π|X), (1)

where S represents a search function that unfolds G to all possible
node sequences of length T (not counting non-emitting start and end
nodes), π denotes a single sequence of nodes, and p(π|X) is the pos-
terior probability for π given feature sequence X . The loss function
is defined as the following negative log likelihood:

L = − ln p(G|X). (2)

Following [14], we index the nodes of graph G using g =
0, . . . , G + 1, sorting them in a breadth-first search manner from
0 (non-emitting start node) to G + 1 (non-emitting end node). We
denote by l(g) ∈ U the output symbol observed at node g, and by
W(g,g′) a deterministic transition weight on edge (g, g′). In addi-
tion, we denote by πt:t′ = (πt, . . . , πt′) the node sub-sequence of
π from time index t to t′. Note that π0 and πT+1 correspond to the
non-emitting start and end nodes 0 and G+ 1, respectively.

We modify GTC such that the neural network can generate an
additional posterior probability distribution, ωtI(g,g′), representing a
transition weight on edge (g, g′) at time t, where I(g, g′) ∈ I and I
is the index set of all possible transitions. The posterior probabilities
are obtained as the output of a softmax. The forward probability,
αt(g), represents the total probability at time t of the sub-graph G0:g

of G containing all paths from node 0 to node g. It can be computed
for g = 1, . . . , G using

αt(g) =
∑

π∈S(G,T ):
π0:t∈S(G0:g,t)

t∏
τ=1

Wπτ−1,πτω
τ
I(πτ−1,πτ )y

τ
l(πτ ). (3)

Note that α0(g) equals 1 if g corresponds to the start node and it
equals 0 otherwise. The backward probability βt(g) is computed

similarly, using

βt(g) =
∑

π∈S(G,T ):
πt:T+1∈S(Gg:G+1,T−t+1)

[
yTl(πT )

T−1∏
τ=t

Wπτ ,πτ+1ω
τ+1
I(πτ ,πτ+1)y

τ
l(πτ )

]
, (4)

where Gg:G+1 denotes the sub-graph of G containing all paths from
node g to node G + 1. Similar to GTC or CTC, the computation
of α and β can be efficiently performed using the forward-backward
algorithm.

The network is optimized by gradient descent. The gradients of
the loss with respect to the label posteriors ytk and to the correspond-
ing unnormalized network outputs utk before the softmax is applied,
for any symbol k ∈ U , can be obtained in the same way as in CTC
and GTC, where the key idea is to express the probability function
p(G|X) at t using the forward and backward variables:

p(G|X) =
∑
g∈G

αt(g)βt(g)

ytl(g)
. (5)

The derivation of the gradient of the loss with respect to the
network outputs for the transition probabilities wti , for a transition
i ∈ I, is similar but with some important differences. Here, the key
is to express p(G|X) at t as

p(G|X) =
∑

(g,g′)∈G

αt−1(g)Wg,g′ω
t
I(g,g′)βt(g

′). (6)

The derivative of p(G|X) with respect to the transition probabilities
ωti can then be written as

∂p(G|X)

∂ωti
=

∑
(g,g′)∈Φ(G,i)

αt−1(g)Wg,g′βt(g
′), (7)

where Φ(G, i) = {(g, g′) ∈ G : I(g, g′) = i} denotes the set
of edges in G that correspond to transition i. To backpropagate the
gradients through the softmax function of wti , we need the deriva-
tive with respect to the unnormalized network outputs hti before the
softmax is applied, which is

− ∂ ln p(G|X)

∂hti
= −

∑
i′∈I

∂ ln p(G|X)

∂ωti′

∂ωti′

∂hti
. (8)

The gradients for the transition weights are derived by substituting
(7) and the derivative of the softmax function ∂ωti′/∂h

t
i = ωti′δii′ −

ωti′ω
t
k into (8):

−∂ ln p(G|X)

∂hti
=ωti−

ωti
p(G|X)

∑
(g,g′)∈Φ(G,i)

αt−1(g)Wg,g′βt(g
′). (9)

We used the fact that

−
∑
i′∈I

∂ ln p(G|X)

∂ωti′
ωti′δii′ = −∂ ln p(G|X)

∂ωti
ωti ,

= − ωti
p(G|X)

∑
(g,g′)∈Φ(G,i)

αt−1(g)Wg,g′βt(g
′), (10)

and that∑
i′∈I

∂ ln p(G|X)

∂ωti′
ωti′ω

t
i

=
∑
i′∈I

ωti′ω
t
i

p(G|X)

∑
(g,g′)∈Φ(G,i′)

αt−1(g)Wg,g′βt(g
′),

=
ωti

p(G|X)

∑
i′∈I

∑
(g,g′)∈Φ(G,i′)

αt−1(g)Wg,g′ω
t
i′βt(g

′),



=
ωti

p(G|X)

∑
(g,g′)∈G

αt−1(g)Wg,g′ω
t
I(g,g′)βt(g

′),

=
ωti

p(G|X)
p(G|X) = ωti . (11)

For efficiency reason, we implemented the GTC objective in
CUDA as an extension for PyTorch.

3. MULTI-SPEAKER ASR AND BEAM SEARCH

We apply the extended GTC approach to multi-speaker ASR, which
is considered as a challenging task in the field of speech process-
ing. One of the main difficulties of multi-speaker ASR stems from
the necessity to find a way to train a network that will be able to
reliably group tokens from the same speaker together. Most exist-
ing approaches attempt to handle this problem either by splitting the
speakers across multiple outputs [18, 21] or by making predictions
sequentially speaker by speaker [22–24]. The ambiguity in how to
assign a given output to a given reference at training time is typically
broken either by using permutation invariant training or by using an
arbitrary criterion such as assigning an output to the speaker with
highest energy or with the earliest onset. We here take a completely
different approach, motivated by our noticing that a graph can be a
good representation for overlapped speech, since it can represent the
tokens at each node while the speaker identity can also be labeled
at each edge. More specifically, given the transcriptions of all the
speakers in an overlapped speech, we can convert them to a sequence
of chronologically ordered linguistic tokens where each token has a
speaker identity. The temporal alignment of tokens can be acquired
by performing CTC alignment on each isolated clean speech, which
is like a sequence of sparse spikes, as shown in Fig. 2, and merging
them based on their time occurrence. Note here that this assumes
that the activation period of linguistic tokens from different speakers
are not completely the same. In practice, this condition is often satis-
fied, although overlaps do occur in some small percentage of frames.
Based on this, we can construct a graph for multi-speaker ASR for
each overlapped speech mixture. We show a simple example graph
in Fig. 1. In this setup, the alphabet U for the node labels consists
of all the ASR tokens, and the set of transitions I consists of the
speaker indices up to the maximum number of speakers.

As in GTC [14], we can apply a beam search algorithm during
decoding. Since the output of GTC-e contains tokens from multi-
ple speakers, we need to make modifications to the existing time-
synchronous prefix beam search algorithm [25, 26]. The modified
beam search is shown in Algorithm 1. The main modifications are
three fold. First, we apply the speaker transition probability in the
score computation. Second, when expanding the prefixes, we need
to consider all possible speakers. Third, when computing the LM
scores of a prefix, we need to consider the sub-sequences of differ-
ent speakers separately.

4. EXPERIMENTS

4.1. Setup

We carried out multi-speaker end-to-end speech recognition experi-
ments using the LibriMix [27] dataset as well as data derived from
it. LibriMix contains multi-speaker overlapped speech simulated by
mixing utterances randomly chosen from different speakers in the
LibriSpeech corpus [28]. For fast adaption, we use the 2-speaker
train clean 100 subset of LibriMix. The original LibriMix dataset
generates fully overlapped speech by default, which means that one

Algorithm 1 The modified time-synchronous prefix beam search for
extended GTC. We use Aprev to store every prefix l at every time
step. We denote the alphabet by U and number of speakers by S.
We denote the symbol posterior by p(·) and the speaker transition
posterior by pω(·).

1: `← ((〈sos〉 , 0) , )
2: pb(`)← 1, pnb(`)← 0
3: Aprev ← {`}
4: for t=1,. . . ,T do
5: Anext ← {}
6: for ` in Aprev do
7: for c in U do
8: if c = blank then

9:
pb(`)← p(blank;xt)p

ω(blank;xt)(pb(`;x1:t−1)+

pnb(`;x1:t−1))
10: add ` to Anext

11: else
12: for s = 1, . . . , S do . Loop over speaker index
13: `+ ← append (c, s) to `
14: if (c, s) = `end then
15: pnb(`

+;x1:t)← p(c;xt)pb(`;x1:t−1)pω(s;xt)
16: pnb(`;x1:t)← p(c;xt)pnb(`;x1:t−1)pω(s;xt)
17: else

18:
pnb(`

+;x1:t)← p(c;xt)(pb(`;x1:t−1)+

pnb(`;x1:t−1))pω(s;xt)
19: end if
20: if `+not inAprev then

21:
pb(`

+;x1:t)← p(blank;xt)(pb(`
+;x1:t−1)+

pnb(`
+;x1:t−1))pω(blank;xt)

22:
pnb(`

+;x1:t)← p(c;xt)pnb(`
+;x1:t−1)·

pω(s;xt)
23: end if
24: add `+ to Anext

25: end for
26: end if
27: end for
28: end for
29: Aprev ← k most probable prefixes in Anext . Track the LM

scores of different speakers separately.
30: end for

utterance is 100% interfered by the other (assuming they have the
same length). However, in realistic conditions, the overlap ratio is
usually small [29,30]. To simulate such conditions, we use the same
utterance selections and signal to noise ratio (SNR) as in LibriMix
with smaller overlapping ratios of 0% and 40% to generate addi-
tional training data subsets.

For labels, we use the linguistic token sequence of all the speak-
ers in the mixture. First, we generate the token alignments given
each source utterance based on the Viterbi alignment of CTC, which
indicates the rough activation time of every token. Then we combine
the alignments of two speakers by ordering the tokens monotonically
along the time axis. In order to reduce the concurrent activations of
tokens from different speakers, we make use of byte pair encodings
(BPE) as our token units. In our experiments, we use the BPE model
with 5000 tokens trained on LibriSpeech data. The concurrent ac-
tivations of tokens for two speakers are relatively rare, at the rate
of 6% and 2% on fully and 40% overlapping ratio training subsets
respectively. When these concurrent activations occur, we use a pre-



Fig. 2. An example of speaker transition posterior predicted by GTC. The input 2-speaker utterance’s overlap ratio is about 40%. The figure
shows the predicted (solid line) and ground truth (dashed line) activations.

Table 1. WER(%) comparison between baselines and the GTC-e
model using greedy search decoding.

0% overlap 20% overlap 40% overlap Full overlap

Model dev test dev test dev test dev test

single-speaker CTC 34.6 34.1 37.4 37.0 45.9 45.3 76.3 75.9
PIT-CTC 18.8 19.2 19.9 22.3 22.9 23.5 32.9 33.8
GTC-e 20.5 21.1 22.6 23.3 26.3 27.3 44.6 45.8

Table 2. Oracle TER(%) comparison between PIT-CTC and GTC-e.
0% overlap 20% overlap 40% overlap Full overlap Average

Model dev test dev test dev test dev test dev test

PIT-CTC 18.5 18.4 19.4 19.5 22.0 22.4 30.1 30.9 22.5 22.8
GTC-e 19.8 20.1 21.1 21.4 24.1 24.6 33.4 33.9 24.6 25.0

defined order which makes the label from the speaker with highest
energy over the whole utterance come first (allowing multiple per-
mutations in the label graph will be considered in future work).

For ASR models, we simply reused the encoder architecture in
PIT-based multi-speaker end-to-end speech recognition models, for
the details of which we shall refer the reader to [18]. In the model,
there are 2 CNN blocks to encode the input acoustic feature, fol-
lowed by 2 sub-networks each of which has 4 Transformer layers
to extract the token and speaker information, respectively. Then 8
shared Transformer layers are used to convert each of the two se-
quences to some representation. For the two output sequences, one
is regarded as token hidden representation and the other one is re-
garded as speaker prediction. We use a normal single-speaker ASR
model trained with CTC (single-speaker CTC) and the original end-
to-end PIT-ASR model [18] trained with CTC loss only (PIT-CTC)
as our baselines.

4.2. Greedy search results

In this section, we describe the ASR performance of the baselines
and the proposed GTC-e model using greedy search decoding. The
word error rates (WERs) are shown in Table 1. From the table,
we can see that the proposed model is better than the normal ASR
model. Our proposed model also achieves a performance close to the
PIT-CTC model, especially in the low-overlap ratio cases (0%, 20%,
40%). Note that although our model predicts the speaker indices,
there exists speaker prediction errors. We further check the oracle
token error rates (TER) of PIT-CTC and GTC-e, by only comparing
the tokens from all output sequences against all reference sequences,
regardless of speaker assignment. As shown in Table 2, we obtain
averaged test TERs for PIT-CTC and GTC-e of 22.8% and 25.0%
respectively, from which we can tell that the token recognition per-
formance is comparable. It indicates that we should consider how to
improve the speaker prediction in the next step.

We also show an example of CTC ground truth token align-
ment together with the speaker transition posterior predictions by

Table 3. WER(%) comparison between PIT-CTC and GTC-e using
beam search decoding.

0% overlap 20% overlap 40% overlap Full overlap

Model dev test dev test dev test dev test

PIT-CTC 11.7 12.4 12.6 13.4 16.3 18.1 24.0 26.3
GTC-e 14.8 15.5 16.5 17.2 19.5 20.4 32.7 33.7

Table 4. WER(%) for each speaker with GTC-e using beam search
decoding.

0% overlap 20% overlap 40% overlap Full overlap

Speaker dev test dev test dev test dev test

spk1 15.0 15.1 17.0 17.3 20.6 21.1 33.0 33.7
spk2 14.7 15.7 15.9 17.1 18.4 19.7 32.3 33.7

our model in Fig. 2. From the figure, we can see that our GTC-e
model can accurately predict the activations of most tokens.

4.3. Beam Search Results

We here present the ASR performance of beam search decoding,
shown in Table 3. For the language model, we use a 16-layer
Transformer-based LM trained on full LibriSpeech data with exter-
nal text. The beam size of GTC-e is set to 40, while that of PIT-CTC
is cut to half to keep the average beam size of every speaker the
same. With the beam search, the word error rates are greatly im-
proved. Our approach obtains promising results which are close to
the PIT-CTC baseline, albeit with a slightly worse WER. In addition
to the average WERs, the WERs for each speaker are also shown in
Table 4, confirming that the model is not biased towards a particular
speaker output.

5. CONCLUSION

In this paper, we proposed GTC-e, an extension of the graph-based
temporal classification method using neural networks to predict pos-
terior probabilities for both labels and label transitions. This ex-
tended GTC framework opens the way to a wider range of appli-
cations. As an example application, we explored the use of GTC-e
for multi-speaker end-to-end ASR, a notably challenging task, lead-
ing to a multi-speaker ASR system that transcribes speech in a very
similar way to single-speaker ASR. We have performed preliminary
experiments on the LibriMix 2-speaker dataset, showing promising
results demonstrating the feasibility of the approach. In future work,
we will explore other applications of GTC-e and investigate ways to
improve the performance of extended GTC on multi-speaker ASR
by using new model architectures and by exploring label and speaker
permutations in the graph to allow for more flexible alignments.
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