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ABSTRACT  

Light field image becomes one of the most promising media 
types for immersive video applications. In this paper, we 
propose a novel end-to-end spatial-angular-decorrelated 
network (SADN) for high-efficiency light field image 
compression. Different from the existing methods that 
exploit either spatial or angular consistency in the light field 
image, SADN decouples the angular and spatial information 
by dilation convolution and stride convolution in spatial-
angular interaction, and performs feature fusion to compress 
spatial and angular information jointly. To train a stable and 
robust algorithm, a large-scale dataset consisting of 7549 
light field images is proposed and built. The proposed 
method provides 2.137 times and 2.849 times higher 
compression efficiency relative to H.266/VVC and 
H.265/HEVC inter coding, respectively. It also outperforms 
the end-to-end image compression networks by an average 
of 79.6% bitrate saving with much higher subjective quality 
and light field consistency.  

Index Terms— Light field image compression, end-to-
end learned method, angular-spatial decoupling 

1. INTRODUCTION 

Light field (LF) images that record the angular and spatial 
information of light rays simultaneously facilitate depth 
estimation [1], 3D reconstruction [2] and free viewpoint 
rendering [3], which become one of the most promising 
media types for immersive applications like 6-degree-of-
freedom virtual reality (6DoF VR). Thus, efficient LF image 
compression is under investigation in Joint Photographic 
Experts Group (JPEG) in JPEG PLENO [4] and ISO/IEC 
JTC 1/SC 29 WG04 under MPEG Video Coding [5].  

Generally, a light field image can be represented by: a 
lenslet image (LI) as that shown in Fig. 1 (a), which consists 
of spatially arranged micro-images (MIs) recording the 
angular information at spatial positions; and sub-aperture 
images (SAIs) as that shown in Fig. 1 (b), each of which 
records spatial information at a perspective. Although an LI 
is generally captured by plenoptic cameras [6] (e.g. Raytrix 
cameras [7]) and SAIs are acquired by camera arrays, SAIs 
at a time can be converted to an LI by extracting the pixels 

at the same spatial coordinate in all the SAIs to form an MI 
in the LI [8, 9].  

Corresponding to the two representations, the existing LF 
compression methods are classified into two categories: 
compressing LIs [10-13] and compressing SAIs [14-19]. LI-
compressing methods [10-12] exploit repetitive structures in 
the adjacent MIs, while providing reduced coding efficiency 
in the depth varying area. SAIs-compressing methods 
reorder [17] or sparsely sample [14] the SAIs to further 
exploit the angular correlations by inter coding. However, 
both of them concentrate on spatial consistency or angular 
consistency and inevitably destroy intrinsic consistency. 
Thus, some end-to-end networks arise to exploit the intrinsic 
consistency of light field based on nonlinear approximation 
capability. Z. Zhao et al [20] introduced a convolutional 
neural network (CNN) to reconstruct unsampled SAIs. T. 
Zhong et al [21] proposed an adaptive 3D CNN to compress 
the rearranged SAIs sequence along the spatial or angular 
dimension. However, they ignore the impact of the spatial 
and angular coupling in the LF image, especially that in the 
LI. Although there exists some well-performed hierarchical 
networks for end-to-end image compression [22, 23], none 
of them can perform well in LI compression because of 
lacking the solutions in decoupling the spatial and angular 
information.  

Consequently, a novel end-to-end spatial-angular-
decorrelated network (SADN) is proposed in this paper to 
compress the spatial and angular information in the LF 
image jointly. Specifically, spatial-angular interaction 
decouples the spatial and angular information of focused and 
depth varying objects from the distinctive pixel distribution 
in the LI by dilation convolution and stride convolution. 
Feature fusion fuses the spatial feature maps and angular 

          
(a)                                              (b)  

Fig. 1. Two light field representations (a) LI, (b) SAIs. 
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Fig. 2. Overview of the SADN architecture. The convolution layer is denoted as Conv (kernel size, channels, dilation, stride). A and N 
are 13 and 48 in our implementation respectively. 

feature maps to compress the spatial and angular information 
jointly. To train a robust and stable algorithm, a large-scale 
dataset consisting of 7549 natural light field images with 
diverse textures and contents is proposed and built. On 
average, the proposed method achieves the best performance 
at each rate-distortion (RD) points, and saves 64.6% bitrate 
relative to H.265/HEVC inter coding and 79.6% bitrate 
compared to end-to-end image compression networks. To 
the best of our knowledge, this is the first LI-based work that 
outperforms the SAI reordering method using VVC as the 
codec. Besides, our model produces higher subjective 
quality and geometric consistency.  

The remainder of this paper is organized as follows. 
Section 2 describes the proposed method and dataset. 
Experimental results are provided in Section 3. The 
conclusions are drawn in Section 4. 

2. THE PROPOSED METHOD 

In the proposed method, an LI is used as the input since the 
angular information is easy to be extracted. The LI is 
denoted by AH AWL  , where A  represents the angular 
resolution; H  and W  represent the height and width of the 
LI in pixel, respectively. When the Lambertian condition 
holds, an MI in the LI, like the green box sample shown in 
Fig. 1 (a), is in size of A A containing A×A angular pixels 
for a focused point, while each MI presents the spatial 
information of the LF. Based on the representation, SADN 
together with a large-scale LI dataset are proposed to 
compress LF efficiently. 

2.1 The architecture of the proposed SADN 

SADN takes the LIs as the input and reconstructs the 
lossy LIs at the decoder side. Its architecture is shown in Fig. 
2. SADN is composed of spatial-angular interaction, feature 
fusion, and an image compression backbone network. 
Spatial-angular interaction decouples the angular and spatial 
information in the LI. Spatial-angular fusion fuses the 

decoupled information for feature extraction. The 
hierarchical attention compression network with large 
receptive field is adopted as the backbone [24] to analyze 
and compress the spatial-angular feature maps and 
synthesize the coarse LI feature maps. 
Spatial-angular Interaction. Based on the distinctive pixel 
distribution, a spatial feature extractor (SFE), 3 × 3 
convolution with dilation of A, is utilized to extract the 
spatial information. An A×A convolution with the stride of A, 
called angular feature extractor (AFE), extracts the angular 
information.  

The spatial and angular information in the LI can be 
decoupled by SFE and AFE as  

 0 0SFE( ) AFE( )S AL L ，  , (1) 
where 0S  and 0A  represents the initial spatial and angular 

feature maps, respectively.  
Since objects may be depth varying or occluded in the 

natural world, pixels of the unfocused point cannot map at 
the same MI. To address this problem, spatial-angular 
interaction makes the spatial and angular information fully 
interactive and decouples the information: 

 0 0 0

0 0 0

SFE( , )

( , AFE( ))
S S S A

A A S A

A

Conv

  

 

   
   

, (2) 

where S , A  represent the spatial and angular feature 

maps. Conv(.), A , and + represent convolution, up-
sampling operation and skip connection, respectively. The 
skip connection ensures that the interaction retains the 
spatial and angular information of focused points, and learns 
the latent information with residual learning. The up-
sampled angular information concatenated with 0S  is 

extracted by SFE to guide the spatial information extraction. 
The extracted spatial information by AFE is concatenated 
with 0A  to obtain the latent angular information. 

Feature Fusion. In order to consider both spatial and 
angular information jointly, feature fusion fuses decoupled 



 

Fig. 3. Some central SAIs of LF images in the dataset. 

spatial and angular information by 
 SFE( , ( ) )f S AConv A    ,  (3) 

where f  denotes fused spatial-angular feature maps. Thus, 

analysis network with a large receptive field can fully 
compress f  considering angular and spatial information 

jointly. 
The loss function of the RD optimization is defined by 

    , (4) 
where  ,  ,   represent rate measured by bits per pixel 
(bpp), Lagrangian multiplier and Mean Square Error, 
respectively. Different bit rates are determined by different 
  values. 

2.2 LF dataset 

We propose a new LF image database called “PINet” 1 
inheriting the hierarchical structure from WordNet [25]. It 
consists of 7549 LIs captured by Lytro Illum [26], which is 
much larger than the existing databases. The images are 
manually annotated to 178 categories according to WordNet, 
such as cat, camel, bottle, fans, etc. The registered depth 
maps are also provided. Each image is generated by 
processing the raw LI from the camera by Light Field 
Toolbox v0.4 [27] for demosaicing and devignetting. Some 
central SAIs of LF images are shown in Fig. 3 Over 34% 
categories have more than 20 images, and 19 categories 
have more than 100 images. The large-scale natural dataset 
benefits us to train a stable and robust algorithm. 

3. Experimental Results 

To demonstrate the effectiveness of our proposed algorithm, 
experiments and comparisons are conducted. The RD result, 
geometric consistency and qualitative results are analyzed. 

3.1 Experiment setup 

We tested the algorithms on the commonly used ICME 2016 
Grand challenge test dataset with 12 LF images [28]. We 
compare our work with state-of-the-art (SOTA) methods 
GCC [14], GPR [11], SOP [16], SPR [17], and end-to-end  

                                                 
1 https://cloud.tsinghua.edu.cn/d/d47ad68552ec408eac94/  
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Fig.4. Performance evaluation on ICME light field challenge test 
dataset. (a) RD curves of LF methods (b) RD curves of end-to-end 
methods. 

image compression methods Minnen’s [23] and Cheng’s 
[24]. SOP and SPR are performed on HM 16.9 [29] and 
VTM 10.0 [30], the official test models of H.265/HEVC and 
H.266/VVC. Minnen’s, Cheng’s and our model are trained 
on the non-overlapping 43099 LI patches of “PINet”. Due to 
significant distortion of the edge perspective, LF images 
with central angular resolution 13×13 are used for the test. 

3.2 Rate-distortion performance 

The RD performance is compared in Fig. 4. In terms of 
PSNR and SSIM, our method achieves the best coding 
performance at all the test RD points with a remarkable gain 
compared to LF methods and end-to-end methods. 
Compared to the SOTA sparse sampling method GCC, our 
method further exploits the redundancy of LF and yields 
much attractive RD performance at the relatively high 
bitrates (>0.008 bpp). To the best of our knowledge, our 
method is the first LI-based work to achieve better 
performance than the SAI-based methods applied in VVC. 
The big performance gap between our method and two end-
to-end image compression methods, shown in Fig. 4 (b), 
demonstrates the superiority of decoupling and compressing 
the spatial-angular information jointly. 



 Fig. 5. Comparison of the EPI consistency of depth varying regions of Bikes (I01), Danger_de_Mort (I02), Flowers (I03). The quality of 
each image is measured by PSNR (dB)/bpp.

The BD-rate [31] performance of our method with the 
SOTA methods is listed in Table 1. The proposed method 
outperforms the other methods with considerable gain. It 
achieves 36.2% and 64.9% bitrate saving relative to GCC 
and SAI reordering methods respectively. Moreover, it 
outperforms the SOTA end-to-end hierarchical attention 
image compression networks by a 79.6% bitrate reduction. 
Surprisingly, SADN provides 6.579 times higher 
compression efficiency compared to GPR, the SOTA LI-
based method. 

Table 1. The BD-rate performance of SADN vs. LF compression 
methods on 12 LF images 

Method GCC 
SPR-
VVC 

SOP-
VVC 

SPR-
HEVC 

SOP-
HEVC 

GPR Cheng’s 

BD-BR -36.2% -46.4% -53.2% -64.9% -64.6% -84.8% -79.6% 

3.2 Geometric consistency and qualitative results 

The Epipolar Plane Images (EPI), which contains depth 
varying and occluded information of the natural objects, can 
reflect the geometric consistency of LF. EPI consistency of 
depth varying regions extracted from the decoded results are 
shown in Fig. 5. The SAI reordering methods, SPR and SOP, 
show obvious distortion on EPI due to the content 
discontinuity of SAIs. GCC synthesizes the unsampled SAIs 
based on the disparity maps and fails to preserve the 
consistency of occluded areas. The GPR, Minnen’s and 
Cheng’s methods concentrate on the local MIs and generate 
smooth EPI. Our method preserves the EPI consistency 
remarkably at a low bitrate. 

The central SAI of Bikes is extracted with approximately 
0.0068 bpp at the compression ratio 3500:1 in Fig. 6. Our 
method generates more visually pleasing results with clear 
edges in bike cables. While, color distortion and blurring are 
easy to be observed in the results of the other methods. 

4. CONCLUSIONS 

This paper proposed a SADN to take advantage of both 
spatial and angular consistency into LF compression. We 

proposed spatial-angular interaction to decouple the spatial 
and angular information in LI by dilation convolution and 
stride convolution. Feature fusion fuses the spatial and 
angular information to compress the information jointly. A 
large-scale LF dataset consisting of 7549 images with a 
variety of contents and textures is built to train our model. 
Experimental results have demonstrated the superiority of 
our proposed method compared to the SOTA methods. The 
proposed method saved 64.9% bitrate relative to 
H.265/HEVC inter coding and achieved 36.2% bitrate 
reduction compared to SOTA sparse sampling method. It 
also outperforms the state-of-the-art end-to-end hierarchical 
attention image compression networks by 79.6% bitrate 
saving. Besides, the subjective quality and geometric 
consistency of our model outperform existing methods. 
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Fig. 6. Visualization of reconstructed central SAI of Bikes (I01) 
with approximately 0.0068bpp. 
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SPR-VVC 29.43/0.0074 28.88/0.0053 
SOP-VVC 29.29/0.0077 29.68/0.0067 28.63/0.0053 
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