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ABSTRACT

Wav2vec2.0 is a popular self-supervised pre-training framework for
learning speech representations in the context of automatic speech
recognition (ASR). It was shown that wav2vec2.0 has a good ro-
bustness against the domain shift, while the noise robustness is still
unclear. In this work, we therefore first analyze the noise robust-
ness of wav2vec2.0 via experiments. We observe that wav2vec2.0
pre-trained on noisy data can obtain good representations and thus
improve the ASR performance on the noisy test set, which however
brings a performance degradation on the clean test set. To avoid
this issue, in this work we propose an enhanced wav2vec2.0 model.
Specifically, the noisy speech and the corresponding clean version
are fed into the same feature encoder, where the clean speech pro-
vides training targets for the model. Experimental results reveal that
the proposed method can not only improve the ASR performance on
the noisy test set which surpasses the original wav2vec2.0, but also
ensure a tiny performance decrease on the clean test set. In addition,
the effectiveness of the proposed method is demonstrated under dif-
ferent types of noise conditions.

Index Terms— Wav2vec2.0, speech recognition, noise robust-
ness, self-supervised pre-training, speech representation.

1. INTRODUCTION

Self-supervised pre-training has become an effective method for
neural network models to utilize unlabeled data. Recently, many
self-supervised learning methods for speech representations have
been proposed in the speech domain. For example, autoregressive
predictive coding (APC) [1] was proposed to reconstruct the future
frames based on the past frames. Contrastive predictive coding
(CPC) [2]| and wav2vec [3|| perform the next-step prediction in a
similar way but using a contrastive loss. Meanwhile, the contextual
speech representations can be learned from the unlabeled speech
data by reconstructing the masked input speech frames in [4-8].
Specifically, the contextual speech representations learned in [4-6]
utilize a bidirectional transformer (BERT) structure [9]], while that
learned in [7}/8] are based on a bidirectional long short-term mem-
ory (LSTM) structure [[10]]. Vg-wav2vec [11] utilizes a quantization
module to extract discrete semantic units from unlabeled speech
data and then uses the BERT to perform contextual modeling on the
extracted units. Wa2vec2.0 [[12]] employs a convolutional neural net-
work (CNN) to extract local features from the raw waveform, which
are then input to the BERT module to perform mask prediction by a
contrastive loss.
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To the best of our knowledge, there are few works focused on
the robustness of self-supervised pre-trained models. For example,
it was shown in [[13}14] that a modified CPC pre-trained model
can be transferred well across domains, and larger pre-training
datasets lead the ASR model to be much more robust against domain
shift. The robust wav2vec2.0 proposed in [[15] reveals the impact
of domain mismatch on the self-supervised speech representation
learning. The problem-agnostic speech encoder (PASE+) that was
proposed in [16] introduces online speech data augmentation mod-
ules for self-supervised learning and obtains a good performance in
noisy environments. Note that although in [|16] the multi-task self-
supervised learning can obtain robust representations, the robustness
against noise was not reported. Apart from the requirement on the
robustness in terms of the domain shift, the robustness of pre-trained
models against noise should also be taken into account in order to
evaluate the modeling effectiveness, particularly for practical noisy
ASR applications.

In this work, we first investigate the noise robustness of the
self-supervised pre-trained wav2vec2.0 model [[12]. For this, we
use the same experimental data as in [[17] for unsupervised pre-
training and evaluate on the same noisy test set. Experimental results
show that pre-training on noisy data can obtain robust representa-
tions. It is shown that the wav2vec2.0 model in noisy scenes can
greatly improve the speech recognition performance of low signal-
to-noise-ratio (SNR) speech, however, the performance significantly
drops on the clean test set. Therefore, in order to avoid the perfor-
mance decrease on the clean test set, we then propose an enhanced
wav2vec2.0 model. In detail, during the pre-training phase, the noisy
speech and clean speech are sent into a shared feature encoder. The
noisy feature is input to the transformer encoder, while the clean
feature is fed to the vector-quantization (VQ) module, which pro-
vides clean training targets for the transformer encoder. The pro-
posed model is evaluated under different noisy conditions, which
achieves a much better performance on noisy data at the cost of a
tiny performance sacrifice on the clean test set, resulting in a better
robustness compared to the original wav2vec2.0 as well as existing
pre-training models. The rest of this paper is arranged as follows.
Section 2introduces the classic wav2vec2.0 model and the proposed
enhanced wav2vec2.0 model. Section[3]presents the data and model
configurations. Results are shown in Section [i] followed by con-
cluding remarks in Section 3]

2. METHOD
2.1. Wav2vec2.0

To guide the reader, we briefly introduce the wav2vec2.0 model in
this section. In the wav2vec2.0, the raw waveform is input into a
stack of CNN layers to obtain local features. A certain proportion of
local features are masked and then sent to a contextual transformer
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Fig. 1: An illustration of the enhanced wav2vec2.0 model.

network for predicting the masked features using the contextual in-
formation. Finally, the contrastive loss between the predicted fea-
tures and the quantized features of the real frames is calculated. In
this way, the pre-trained model enables good representations, which
are rather beneficial for downstream ASR tasks. For instance, in case
of only using 10 minutes of transcribed speech for fine-tuning, it
achieves a word error rate (WER) of 5.7%/10.1% on the clean/noisy
test sets of LibriSpeech [18]]. For more details about the wav2vec2.0
model, we refer to [12].

2.2. The proposed enhanced wav2vec2.0

The proposed enhanced wav2vec2.0 model is on the basis of the
classic wav2vec2.0 [12], and the corresponding diagram is shown in
Fig. [I} which also consists of a feature encoder f : X — Z and a
transformer encoder g : Z +— C. The feature encoder consists of
seven layers of convolutional network and the transformer encoder
contains twelve transformer blocks. Specifically, as shown in (]I[),
the shared feature encoder downsamples the input raw noisy wave-
form X 05y to the noisy features Z,,0isy and downsamples the input
clean raw waveform X jcar to the clean features Zejeqn, i.€.,

Znoisy - f(Xnoisy)y chean = f(Xclean)~ (1)

We mask a certain proportion of the noisy features Z,oisy, and
replace it with a learnable vector at the masked position. The
transformer encoder then models high-level content from the input
Znoisy into the noisy contextualized representations Choisy, Which
is given by

Cnoisy = g(Znoisy)‘ 2
On the other hand, the corresponding clean features Z jeqr are dis-
cretized t0 Gclean by @ VQ module Z — @, which are then used as
clean targets in the contrastive objective, i.e.,

Gclean = VQ(chean)- (3)

The motivation of using clean features as the target originates from
the expectation that the model can learn clean speech representations
from noisy features. The involved VQ module is implemented us-
ing the product quantization [19]]. Specifically, the VQ module first
maps the clean features Zejear to logits 1 € RE*Y | where G de-
notes the number of codebooks and V' denotes the number of entries

in each codebook. The gumbel softmax function [20] is then used to
select discrete codebook entries in a fully differentiable way. As a
result, for a given frame Z.jcqn, at time ¢, we can select one entry
from each codebook, concatenate the resulting vectors e, ..., eq and
apply a linear transformation to obtain gcjeqn, . The loss function can
therefore be formulated as

L=L,+aLq+ BLy+vLe, (C))
where

eXp(Sim(Cnoisyt s Qcleany )/N)

L., = —log - - , (5)
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which applies to any time index ¢. It is clear that the total loss func-
tion is the weighted summation over four terms depending on the
parameters c, 3 and v. In @), L, is the contrastive loss, which
enables the model distinguish between the true quantized clean fea-
tures gciean, and a set of K +1 quantized candidate features ¢ € Q.
The quantized candidate features ¢ contains geiean, and K distrac-
tors. The diversity loss L aims to increase the use of quantized
codebook features, and Ly is an > penalty over the outputs of the
feature encoder. In @), sim stands for the cosine similarity between
two vectors and k is a temperature. In @, Dy, Tepresents the proba-
bility of choosing the v-th codebook entry for group g across a batch
of utterances, where 7 is a temperature. In , 14, stands for the
average logits 1 across utterances in a batch. In order to ensure the
consistency between the clean features and the noisy features cor-
rupted by noise, we additionally introduce a consistency loss. As
defined in @), the consistency loss L. measures the Euclidean dis-
tance between noisy features Z, sy and clean features Zcjcqn. In
practice, the weighting parameters are set empirically.

3. EXPERIMENTAL SETUP

3.1. Data description

In order to facilitate a fair comparison with existing approaches, the
data used in the experiments keep exactly the same as that in [17].
In this work, we utilize the Librispeech [[18] train-clean-100 sub-
set as the clean speech training set and the dev-clean subset as the
validation set. The noise data used in the experiment come from
FreeSound [21]] and the sampling frequency of these noise data is 16
kHz. The noise type is divided into two categories, i.e., A and B. The
type-A noise is relatively stationary, including ‘Car’, ‘Metro’ and
‘Traffic’ noise, and the type-B noise is relatively non-stationary, in-
cluding ‘Babble’, ‘Airport/Station’, ‘Cafe’ and ‘AC/Vacuum’ noise.
Each type of noise has 10 and 8 different audio streams in the train-
ing set and the test set, respectively. The length of the noise data
set is around 2 hours in total. In the process of model training
and validation, we randomly select noise samples and mix with the
clean speech at different SNRs € {0, 5, 10, 15,20, 25} dB to gen-
erate noisy data. For the test set, we first randomly select 120 clean
speech from the test-clean subset in the Librispeech and then mix
with noises at different SNRs € {0, 5,10, 15,20} dB to synthetize
4200 noisy test data. Note that the construction of the noisy data



Table 1: The performance comparison of different methods on type-A noise test sets at different SNRs, where “No” means that the pre-training

step is not included. The pre-training and fine-tuning can be performed on different datasets.

WER under SNR (dB)

Method Pre-train | Fine-tune Traffic Metro Car Clean

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 | WER

Baseline [17] | No Clean 724 625 502 410 33.6 | 684 544 464 349 276|350 281 243 217 167 | 103
DEMUCS [17] | FreeSound | FreeSound | 38.2 30.3 253 20.6 179 | 356 249 226 17.1 159|205 18.1 146 13.8 13.1 10.9
AVT [17] No FreeSound | 40.7 325 263 214 185|361 265 226 184 178 | 21.8 189 168 160 153 13.1
No Clean 71.0 578 48.6 405 333|665 544 486 352 282|341 271 228 192 148 11.0

No FreeSound | 52.3 44.8 389 346 312|499 41.1 363 31.6 300|347 303 295 284 268 | 250

Wav2vec2.0 Clean FreeSound | 42.8 342 267 230 194|392 31.0 259 214 197|230 190 176 162 154 14.0
FreeSound | FreeSound | 34.6 279 23.6 189 17.6 | 324 248 207 174 17.1 | 194 17.0 155 147 146 13.5

NoiseX-92 | FreeSound | 354 284 243 21.0 188 | 352 263 234 198 185|212 182 176 17.1 163 16.1

Ours FreeSound | FreeSound | 31.0 223 200 165 149 |29.0 219 181 158 144 | 176 156 144 137 13.1 12.3
NoiseX-92 | FreeSound | 31.2 236 21.0 17.7 168 | 29.1 23.0 197 17.1 159 | 179 164 157 153 14.6 14.3

set keeps the same as [22]. The noise data and noisy test sets can
be downloaded from the websiteﬂ In addition, we also utilize the
NoiseX-92 [23] noise dataset at the pre-training stage for supple-
mentary experiments.

3.2. Self-supervised pre-training

In this work, the pre-training model is implemented using the fairseq
toolkit [24], which mainly includes a feature encoder module, a
transformer encoder module and a VQ module. In detail, the fea-
ture encoder consists of seven convolutional layers and the channel
number of the convolution module is 512. The stride and kernel sizes
of the convolution module are (5, 2, 2, 2, 2, 2, 2), (10, 3, 3, 3, 3, 2,
2), respectively. Therefore, the frame shift of the output Z of the
feature encoder is 20 ms and its receptive field is 25 ms. Both the
clean speech and noisy speech are input to a shared feature encoder
module to obtain speech features. For the transformer encoder mod-
ule, we utilize 12 transformer encoder layers and each layer contains
a self-attention module and a feed forward module. The dimension
of the self-attention module is 512, and 8 heads are utilized. The
dimension of the feed forward module is 512, and the inner dimen-
sion is 2048. For the VQ module, we set G = 2 and V = 320, and
the dimension of each entry is 128. The model size including all
parameters is around 45M. For masking, we sample at all time steps
with a probability of p = 0.065, and mask the subsequent M = 10
time steps. For the loss function, the temperature & is set to be 0.1,
and 7 is annealed from 2 to 0.5 with a coefficient of 0.999995 in
terms of iterations. The parameters o, 8 and +y are set to be 0.1, 10
and 1, respectively. The number of distractors K equals 100. The
pre-training model utilizes the Adam optimizer [25]. During the first
8% of all epochs, the learning rate warms up to 5 x 10~* and then
decays linearly.

‘We randomly select noise samples and add them to clean speech
at different SNRs € {0, 5,10, 15,20,25} dB to obtain the corre-
sponding noisy speech. Then the noisy and clean speech are fed into
the model, respectively. The pre-training model is trained using 6
Tesla-V100-32G GPUs with 500 epochs, and the total training time
is about 60 hours.

3.3. Fine-tuning with labeled data

After the pre-training is completed, we remove the VQ module on
the basis of the pre-trained model, add an additional linear layer on

Uhttps://github.com/archiki/Robust-E2E-ASR

the top of the transformer encoder, and then fine-tune the model us-
ing the labeled data. The modeling unit of the model has 30 char-
acters, including 26 letters and 4 special symbols. The model is op-
timized using the connectionist temporal classification (CTC) loss
function [26]. During fine-tuning, we use the noisy speech at differ-
ent SNRs to fine-tune the model, and the generation of noisy data
is the same as that in the pre-training phase. After the model fine-
tuning, we decode on clean test sets and noisy test sets without any
language model and then calculate the corresponding WER.

4. EXPERIMENTAL RESULTS

Comparison methods: The Baseline in [[17] utilizes the Deep-
speech2 model [27] for training on the Librispeech train-clean-100
dataset with a CTC objective function and evaluates on different
test sets. DEMUCS that was originally proposed in [28] is a typ-
ical waveform-to-waveform model based on the introduction of a
front-end speech denoising module [|17]. The AvT method utilized
in [[17] introduces a gradient reversal layer (GRL) [29] in prior to
the model classification layer, such that the learned speech repre-
sentations can be noise-invariant. For specific implementation about
DEMUCS and AvT, we refer to [[17]. In addition, the proposed
enhanced wav2vec2.0 model will also be compared with the original
wav2vec2.0 method [[12]. Note that different combinations of pre-
training and fine-tuning settings will be considered in experiments.
Table [T] and Table 2] show the ASR performances in terms of
WER of the aforementioned approaches using the type-A (relatively
stationary) and type-B (non-stationary) noises under different SNR
conditions, respectively. From Table[T} it can be seen that although
the structure of the proposed model is different from [17], the pro-
posed baseline system (i.e., wav2vec2.0 no pre-train clean fine-tune)
achieves a comparable performance as compared to the baseline
in [17]. For wav2vec2.0, comparing ‘no pre-train clean fine-tune’
and ‘no pre-train FreeSound fine-tune’ it is clear that fine-tuning on
noisy datasets can improve the ASR performance under most noise
conditions, that is, the noise robustness can be improved. As the
combination of ‘clean pre-train FreeSound fine-tune’ obtains a much
better performance than ‘no pre-train FreeSound fine-tune’ in both
noisy and clean environments, the inclusion of a pre-training phase
is rather beneficial for the robustness of ASR models. Compar-
ing ‘clean pre-train FreeSound fine-tune’ and ‘FreeSound pre-train
FreeSound fine-tune’ (the latter performs better), we find that the
wav2vec2.0 model can still learn a robust speech representation
under noisy scenarios. Compared to DEMUCS or AvT, although



Table 2: The performance comparison of different methods on type-B noise test sets at different SNRs, where for brevity of presentation the
results for the case of SNR = 0 dB are omitted (which does not affect the analysis of results).

WER under SNR (dB)
Method Pre-train | Fine-tune Babble Airport/Station AC/Vacuum Cafe
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Baseline [17] | No Clean 983 913 79.7 650 | 8.1 737 606 50.0 | 831 715 595 458 | 727 595 443 334
DEMUCS [17| | FreeSound | FreeSound | 58.0 41.8 323 254 | 455 337 256 215|454 342 281 228|316 274 203 169
AvT [17] No FreeSound | 55.1 39.5 31.1 246 | 433 334 252 209 | 408 334 293 232|320 263 214 185
No Clean 93.1 849 737 580|806 727 597 488|796 69.6 565 424 | 689 581 437 3438
No FreeSound | 70.8 58.6 47.6 39.8 | 59.5 494 40.6 354 | 565 484 424 355 |49.6 427 346 318
Wav2vec2.0 Clean FreeSound | 583 450 351 27.6 | 481 373 288 247 | 449 361 292 245|364 29.1 239 192
FreeSound | FreeSound | 47.4 359 29.0 235|396 294 237 202|409 324 268 213|280 246 197 170
NoiseX-92 | FreeSound | 52.1 39.7 30.6 26.6 | 40.7 308 253 222|458 37.0 307 247|302 253 222 18.6
Ours FreeSound | FreeSound | 41.0 302 251 19.2 | 334 244 197 169 | 324 25,6 215 17.6 | 247 214 17.7 151
NoiseX-92 | FreeSound | 46.2 372 27.0 223|349 276 227 193|365 29.6 230 19.0 | 249 218 182 16.6

wav2vec2.0 (i.e., FreeSound pre-train FreeSound fine-tune) can
improve the performance on the test set under various noisy con-
ditions, the performance on the clean test set drops significantly.
Similar conclusions can be draw from Table[2]as well.

In order to verify whether the wav2vec2.0 model is robust to
noise types, we use the NoiseX-92 noise dataset to dynamically add
noise to the train-clean-100 subset to obtain noisy dataset for pre-
training and then perform fine-tuning on noisy data. From Table
and Table 2] we can see that the choice of ‘NoiseX-92 pre-train
FreedSound fine-tune’ for wav2vec2.0 is better than the ‘no pre-
train FreedSound fine-tune’ counterpart, indicating that the repre-
sentations obtained by pre-training on other types of noisy data still
have a good robustness. However, as the choice of ‘FreeSound pre-
train FreeSound fine-tune’ leads to a decrease in WER compared
to ‘NoiseX-92 pre-train FreeSound fine-tune’, the data source for
pre-training and fine-tuning affects the performance of wav2vec2.0.
That is, the noise data for pre-training and fine-tuning originating
from different domains might degrade the ASR performance.

Furthermore, from Table[T]and Table 2] we can see that the com-
bination of ‘FreedSound pre-train FreedSound fine-tune’ for the pro-
posed method is better than the same choice for wav2vec2.0 un-
der both noisy and clean conditions. Using the clean speech as
the pre-training targets can improve the performance on the noisy
test set, and it is also ensured that the performance on the clean test
set is not significantly degraded. In addition, the proposed method
with ‘NoiseX-92 pre-train FreedSound fine-tune’ is better than the
wav2vec2.0 counterpart, indicating that a better robustness against
different noise types is obtained. Besides, although the proposed en-
hanced wav2vec2.0 approach works slightly worse than DEMUCS,
the performance under noisy conditions is much better, which are
more common to happen in practice.

Finally, we compare the output representations of different
models after fine-tuning on the noisy test set using the cosine sim-
ilarity criterion. The cosine similarity measures the similarity of
vector a and vector b, which is defined as similarity(a,b) =
a”b/ ||a]|||b|, and its value range is [0, 1]. It is clear that the larger
the cosine similarity, the more similar between two vectors. There-
fore, we can regard the clean baseline as the target and compare
the cosine similarity between the output features of the transformer
encoder of each model and the clean baseline model. Table[3 shows
the cosine similarity under the traffic and babble noise conditions.
It can be seen from Table 3] that the greater the SNR of the test set,
the greater the similarity between the learned representation and the
clean version. We can see that the cosine similarity obtained by the

Table 3: The cosine similarity between the transformer encoder out-
put features of different models and the clean baseline model under
the traffic and babble noise conditions.

Model Cosine similarity
0dB 5dB 10dB 15dB 20dB
Traffic (type-A noise)
o 2 2' _trail
Wav2vec2.0 (no pre-train 0599 0626 0645 0658  0.669
FreeSound fine-tune)
Wav2vec2.0 (FreeSound pre-train 0732 0752 0767 0776 0783
FreeSound fine-tune)
Ours (FreeSound pre-train 0765 0781 0.789 0795  0.799
FreeSound fine-tune)
Babble (type-B noise)
Wav2vec2.0 (no pre-train 0510 0552 0589 0622 0.644
FreeSound fine-tune)
Wav2vec2.0 (F d pre-trai
avavec2.0 (FreeSound pre-train | o 609 0730 0753 0.767
FreeSound fine-tune)
Q F - M
Ours (FreeSound pre-train 0709 0741 0765 0781 0.791
FreeSound fine-tune)

proposed enhanced wav2vec2.0 model is largest, which indicates
that the feature of the enhanced wav2vec2.0 model output is the
closest to the true clean feature. That is, even under noisy conditions
the proposed approach enables a higher fidelity speech representa-
tion with respect to the clean speech compared to existing methods,
which is rather helpful for the subsequent ASR.

5. CONCLUSION

In this paper, we investigated the robustness of the self-supervised
pre-training model, i.e., wav2vec2.0. It was shown that pre-training
on noisy data can obtain good representations. The wav2vec2.0 can
improve the ASR performance on the noisy test set, but the perfor-
mance on the clean test set drops. By taking the clean speech as the
training target for pre-training, the proposed enhanced wav2vec2.0
model can learn a better speech representation, which thus improves
the ASR performance and avoids an obvious performance degrada-
tion on the clean test. In addition, it was shown that the proposed
method is also robust to different types of noise. We found that the
noise robustness of ASR models is related to the fidelity (or SNR)
of learned speech representations, and the proposed method can be
interpreted as a representation enhancement, which improves the fi-
delity of the target speech in principal.
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