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ABSTRACT
The lack of well—annotated datasets in computational pathology
(CPath) obstructs the application of deep learning techniques for
classifying medical images. Many CPath workflows involve trans—
ferring learned knowledge between various image domains through
transfer learning. Currently, most transfer learning research follows
a model—centric approach, tuning network parameters to improve
transfer results over few datasets. In this paper, we take a data—
centric approach to the transfer learning problem and examine the
existence of generalizable knowledge between histopathological
datasets. First, we create a standardization workflow for aggregat—
ing existing histopathological data. We then measure inter—domain
knowledge by training ResNet18 models across multiple histopatho—
logical datasets, and cross—transferring between them to determine
the quantity and quality of innate shared knowledge. Addition—
ally, we use weight distillation to share knowledge between models
without additional training. We find that hard to learn, multi—class
datasets benefit most from pretraining, and a two stage learning
framework incorporating a large source domain such as ImageNet
allows for better utilization of smaller datasets. Furthermore, we find
that weight distillation enables models trained on purely histopatho—
logical features to outperform models using external natural image
data.

1. INTRODUCTION
Currently in the United States, there are a reported 3.94 patholo—
gists per 100, 000 people. In Canada, this number rises slightly to
4.81 pathologists per 100, 000 people [1]. This severe scarcity of
pathologists, combined with a rigorous set of duties that involves
patient care and extraneous specimen diagnoses, results in decreased
diagnosis quality and diminished patient experience [1]. To alleviate
these burdens, the computational pathology (CPath) field has created
numerous computer—aided diagnosis (CAD) tools to assist patholo—
gist diagnoses [2]. These CAD tools utilize computer Vision tech—
niques and neural network architectures to solve a plethora of tasks,
including classification, segmentation, and localization [2].

However, challenges in implementing CAD systems arise in part
due to limitations in pathology datasets. Namely, despite the pres—
ence of large pathology datasets, the lack of proper annotations or
labels hinders development of supervised neural networks [2]. Addi—
tionally, different standards for staining histology slides and varying
optical configurations introduce further complications when creating
CAD systems [3, 4, 5]. Combined, these factors result in a valuable
data landscape comprised of sparse and non—comprehensive datasets.

Transfer learning is widely used in machine learning to com—
pensate for the absence of comprehensive annotated datasets. Using
transfer learning, knowledge gained from one source domain can
be applied to problems on another target domain. In CPath, trans—
fer learning using either natural image datasets or other pathology
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datasets enables networks to generalize to specific target domains
where labeled data is scarce [6, 7, 8, 9].

The merits of transfer learning in CPath are clear: models
achieve higher metrics on a target domain when pretrained on a rel—
evant source domain dataset [6, 7, 8, 9]. These benefits are explored
in previous works through model—centric approaches. While these
approaches are useful in exploring quality in various model archi—
tectures, they ignore key issues introduced when these models are
applied to other datasets. Due to a lack of standardized data prepara—
tion when transferring knowledge between datasets, models trained
on two distinct datasets are likely to learn at two distinct biological
scales. Previous work has shown that models trained from a dataset
gathered by one pathology laboratory can underperform when ap—
plied to images gathered by a separate laboratory [5]. Furthermore,
dataset choice for the source domain is not well explored, with little
known about what makes a “good” dataset. These issues can only
be resolved through a data-centric approach towards exploring the
interactions of source domain data with target domain data under
transfer learning.

In this paper we introduce the following contributions: i) we pro—
pose a standardized platform to aggregate learned histopathological
knowledge, including an image standardization workflow, training,
and a tuning pipeline ; ii) we examine the potential for aggregation
of learned knowledge between multiple pathological datasets. Us—
ing cross transfer over nine classification task datasets, we evaluate
both the quantity and quality of transferable information between
datasets; iii) we propose weight distillation: a method for combin—
ing learned information from encoders trained on separate datasets.
iv) we assess the utility of large natural image domains (ImageNet)
as a source domain with two stage transfer learning; v) we visualize
the transferred knowledge using t—SNE plots and Grad—CAM images.

2. METHODS

We introduce our pipeline for knowledge transfer, which includes
dataset preprocessing, model training, and evaluation. In our evalua—
tion, we considered the databases summarized in Tab. 1. The overall
HistoKT workflow is summarized in Fig. 1.

2.1. Preprocessing
Datasets were standardized according to our pipeline, consisting of
rescaling, cropping, and reflection wrapping to match the benchmark
dataset, ADP. ADP was chosen as a benchmark due to its coverage
of various histological tissue types.

Each image in a given dataset was rescaled to the common pixel
resolution of 1 am using the scikit—image library. If the resul—
tant image is larger than 272 pixels in either dimension, the image is
cropped into 272 X 272 patches, with 50% overlap in either direction.
If the rescaled image is smaller than 272 pixels in either dimension,
the image is reflection wrapped. After cropping, background im—
ages were filtered; images that had low contrast, with pixels falling



Table 1: Dataset Information
Original Dataset Information Number of Extracted Patches

. . . . . . . Pixel Twining Validation TestDataset NameH Tissue Type Diagnostic ‘Stalmng‘Scanner ‘Classes‘Dataset Size‘ Image Size iResolution I 6 Images ‘ . a

ADP [10] Multi—organ Histology (healthy) H&E Huron TissueScope LE1.2 33 17668 272 X 272 1 pm 14134 1767 1767
MHIST [11] Colorectal polyps Cancer H&E Aperio AT2 2 3152 224 X 224 1.25 pm 1740 435 977
EACH [12] Breast Cancer H&E Leica ICCSO HD 4 400 2048 X 1536 0.42 pm 958 240 1199

AJ—Lymph [13] Lymph nodes Lymphoma H&E N/A 3 374 1388 X 1040 0.25 pm 299 37 38
PCarn [14] Lymph nodes Lymphoma H&E Pannoramic 250 Flash II, 2 294912 96 X 96 0.972 pm 2000 400 32322

NanoZoomer—XR Digital slide
scanner C12000—01

CRC [15] Colon & rectum Histopathology H&E Online 7 107000 224 X 224 05 am 14000 1750 1750
GlaS [16] Intestinal glands Cancer H&E Zeiss MIRAX MIDI Slide 2 165 Various 0.62 pm 163 112 40

Scanner
OS [17] Bone Osteosarcoma H&E N/A 3 1144 1024 X 1024 1 pm 13227 1653 1654

BCSS [18] Breast Histopathology H&E Online 10 151 Various 0.25 pm 14288 1786 1787
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Fig. 1: In order to use a new dataset as a source domain for transfer learning, it must first be preprocessed Via standardization to the ADP
dataset format. Afterwards, model training and tuning enables knowledge cross transfer to a task—specific target domain. This cross transfer
is carried out as tuning of a source domain trained encoder. We tune all datasets on all source datasets to evaluate performance.

between the 5th percentile and 99th percentile having less than 5%
coverage of the colour span (0 — 255), were removed.

This pipeline was chosen for maintaining biological scale across
datasets, so that models trained on one dataset operate at the same
scale when applied to another dataset.

2.2. Training
ResNet18 [19] was chosen as the baseline model due to its wide
use throughout literature, as well as its relatively small number of
parameters compared to other commonly selected networks.

For all experiments, training was conducted using PyTorch,
utilizing NVIDIA Tesla V100 Tensor Core GPUs. For all baseline
results, models were trained from random initialization on a given
dataset, using the RMSGD optimizer [20], with an initial learning
rate of 0.03, momentum of 0.9, weight decay of 56 — 4, and all
other parameters left as default [21]. Multi—labeled datasets, ADP
and BCSS, are trained with a weighted one—vs—all cross entropy loss,
while all other datasets are trained with cross entropy loss. Base—
line models were trained for 250 epochs, with three trials for each
dataset. The model with the highest validation accuracy for a given
epoch was taken as the baseline weight for further evaluation.

2.3. Timing
Three primary methods were tested for tuning on a target domain:
no tuning, fine—tuning, and deep—tuning. For no tuning, we take the
encoder trained on a source domain and evaluate the encoder on the

same domain. We denote fine—tuning to be tuning with all layers
frozen except the final fully connected (FC) layer, and deep—tuning
as tuning where no layers are frozen.

Our tuning procedure uses the AdamP optimizer [22], with
weight decay set to 56 — 4, and all other parameters left as default.
Learning rates were determined through a grid search. A learning
rate scheduler was used which reduced the learning rate by a fac—
tor of two every 20 epochs. Models were trained for 250 epochs,
and three trials were run for every learning rate and target domain
combination.

2.4. Transferability

Transferability is evaluated using comparison matrices, as shown in
Tab. 2 and Tab. 3. Along the diagonals are the average top—1 test ac—
curacies for each dataset trained from random initialization using the
methodology described in the training section. We then pick the best
baseline models with respect to top—1 test accuracy as the candidate
model to perform tuning, and present the average test accuracy on
the target datasets. All of the (off—diagonal) results are deep—tuned,
as deep—tuning greatly outperforms fine—tuning in most datasets, as
shown in Tab. 4. Deep—tuning also allows us to compare the differ—
ence in learned representations with t—SNE plots, as fine—tuning does
not change the encoder weights.



Table 2: HistoKT Matrix (Top—l Test Accuracy)
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Table 3: HistoKT Matrix Pretrained on ImageNet (Top—l Test Accuracy)

s ADP MHIST BACl-l AJ-LYMPH
ource

ADP
MHIST I 93.470 .69 93.861 I 52
EACH . . 94.41 92931.52

A1

93550.17
93440.13
94.25029

2.5. Weight Distillation
Taking the baseline weights from top performing models, we per—
form weight distillation as a secondary method for evaluating the
potential for knowledge aggregation. Since all of our models use
the same architecture—ResNetl8—each model differs only by the
dataset it is trained on. For each layer of the model, we unfold
the 4—D weight tensors Wiiataset E wm’” m", where l is the
layer number, into 2—D weight tensors Wimtaset 6 RM”, k =
w x h X n7. To combine weights from models trained on differ—
ent datasets, we stack the unfolded weight tensors from all source
datasets on top of each other to create a new weight tensor. For ex—
ample, a new weight tensor for the 5th convolutional layer

—5 —5 —5 TWC = [WADP. WCRC]
is created using Wimp from layer five of a model trained from
random initialization on ADP and WZRC from layer five of a model
trained from random initialization on CRC. We then apply Singular
Value Decomposition (SVD)

W’o—— U’oK‘oVET
to create factorized matrices We take the first no rows of K10 and
the first no rows and no columns of U0 to keep only the most
important filter values 1n the combined weight tensor, i e. A—l 2
AC[: no, 2] and U—l = UC[: no,: no]. In this way, Wt
filIKllvlcT 6 KW“. Then, we fold WI, back to a 4—D tensor
W“ E Rtxnixn". For non—convolutional 1—D layers, which
include batch normalization and linear layers, the resultant vector
WI, 6 JR" is the mean of the corresponding vectors in all input mod—
els. For 2—D linear weights, the same SVD process is carried out.
The resulting model is deep tuned according to our tuning method—
ology.

2.6. Evaluation
We train our models on the training set and use the validation set to
select the best performing model for each 250 epoch trial. Based on
the validation accuracy, a single best performing model is selected to
be evaluated on the test set. All results reported in this paper are test
set metrics averaged over three runs. To evaluate the model on the
test set, we calculate the test accuracy. All results are summarized in
the results section.

PCam CRC GlaS OS BCSS

97.73002
81.63152 91730.01
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78.27

94420. 45 97.74
94.20 . 53
94.18042

78.862 88
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Moreover, we use t—Distributed Stochastic Neighbor Embedding
(t—SNE) [23] and Grad—CAM [24] to visualize our results. t—SNE Vi—
sualizes high—dimensional data by giving each datapoint a location in
a 2—D map. We also use Grad—CAM to visualize activation heatmaps
of the network on various classes, where a warmer colour intensity
corresponds to the amount of influence an image region has on a
model prediction.

3. RESULTS
Single Stage Transfer Results. Tab. 2 shows the results with a
single stage transfer learning process. The models with the high—
est top—l test accuracies, shown on the main diagonal, are used to
deep tune on the applied dataset. If a deep tuned model outperforms
the baseline, the result is highlighted green, and if it underperforms
compared to the baseline, the result is highlighted in red.

From the results, noticeable improvement from the baseline is
seen when large datasets are used as a source domain: ADP, CRC,
OS, and BCSS all display the ability to transfer knowledge to other,
usually smaller, datasets. Training on smaller datasets like GlaS
or AJ—Lymph consistently decreased performance compared to the
baseline. Of the large source domains, ADP performs poorly in tasks
focused on cancer detection, such as MHIST and PCam, likely due
to these task being out of domain. Note that ADP is focused only on
healthy tissue, while CRC, OS, and BCSS all have diseased classes.
These results show that proper choice of a source domain can affect
performance, and consideration of what classes in the source domain
are shared with the target domain is vital.

Two Stage Transfer Results. Tab. 3 shows the top—l test ac—
curacy of all cross transferred datasets with a two—stage deep tuning
process. Pretrained ImageNet weights are deep tuned using each
dataset in the trained column, shown along the main diagonal, and
these models are then deep tuned again with the applied dataset.

ImageNet pretraining improves overall performance for most
datasets, and produces a higher peak performance in all datasets ex—
cept AJ—Lymph, which is still within margin of error. Interestingly,
datasets that negatively impacted most results in single stage transfer
learning, such as GlaS, BACH, and AJ—Lymph, had many more pos—
itive interactions. We posit that this is due to ImageNet pretraining
providing necessary low level features that were hard for models to
learn from random initialization, due to the small size of the source
domain dataset. Datasets that are multi—class and are initially hard
to learn (low baseline top—1 accuracy) appear to benefit most from

Table 4: Deep—tuning vs Fine—tuning Using ADP Pretrained Weights

1, . g Apphed MHIST BACH AJ-LYMPH PCam CRC GlaS Osteosarcoma BCSS
Deep-tuning 78.03220 93.63046 95.61402 76.42116 99.16007 86.67520 94.52015 97570.04

Fine-tuning 69.531I75 65.30032 71935.48 77040.18 80.92032 80.83332 82.30037 87.75007
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Fig. 2: t—SNE plots of test sets: (a) BACH baseline; 03) BACH deep—
tuned on CRC; (c) BACH deep—tuned on ImageNet; (d) BACH deep,
tuned on CRC deep—tuned on ImageNet.
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Fig. 3: Grad—CAM images for the BACH dataset.

a transfer learning process, as shown in datasets such as ADP and
AJ—Lymph.

The above results describe a preliminary analysis of how much
knowledge is transferable between histopathological datasets. An
increased accuracy could be obtained with an experimental search
of the optimal neural architecture and hyperparameters for each case.
However, such analysis would be outside the scope of the paper.

t-SNE and Grad-CAM Analysis. We chose to show t—SNE re—
sults to visualize changes to latent space representation, along with
Grad—CAM to show an intuitive View on how a deep—tuned model
classifies images. In Fig. 2, t—SNE plots for training and test sets
for the BACH dataset are shown. Deep—tuning on the best perform—
ing dataset, CRC, we see that the representation for the test set be—
comes more disentangled for both single stage and two stage Ima—
geNet training procedures.

Using Grad—CAM, visualizations of the baseline model and
transfer learning models are shown in Fig. 3. During generation of
Grad—CAM visualizations, both augmentation smoothing and eigen
smoothing were used. All activations shown are of the model output
prediction, which matched with ground truth for all classes. Accord—
ing to expert pathologists, the ADP source domain model initialized
with ImageNet weights and tuned on BACH had the best correlating
activation heat map with ground truth for Benign, Invasive, and Nor—
mal classes. In contrast, the BACH model initialized with ImageNet
weights (baseline model) had poor heatmap correlation with ground
truth. However, both the ADP source domain model and BACH
baseline model yielded the same, correct predictions for Benign,
Invasive, and Normal classes.

Weight Distillation. Fig. 4 displays top—l accuracies of top per—
forming models evaluated on the BACH dataset. All single dataset
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Fig. 4: Different combinations of the top performing models on the
BACH dataset. The models with multiple dataset labels use weight
distillation for combining weights.

results, other than the baseline, are first trained on the specified
dataset, and deep tuned on the BACH dataset. For the models created
by weight distillation, we first apply our weight distillation work—
flow to combine two or more baseline weights (no tuning), and then
deep tune the resulting combined model on BACH. T—SNE and Grad,
CAM Visualizations for weight distilled models can be found in the
supplementary mateiial.

Here, all models outperformed the BACH baseline, and all
weight distilled models perform better than or equal to the one stage
deep—tuning models, other than ADP + CRC + OS. We posit that
this effect is due to different CPath datasets offering knowledge
from different domains, shown through our Grad—CAM analysis
where models trained on different source domains learned different
approaches to the same task. This enables our weight distillation
model to outperform even the highest performing ImageNet tuned
model, demonstrating that CPath datasets hold valuable domain
specific knowledge that cannot be seen in natural image datasets.

4. CONCLUSION

In this work, we proposed and tested a cross domain knowledge
transfer pipeline consisting of dataset standardization, data augmen—
tation, and training procedures over nine histopathological datasets.
To assess transferred knowledge, we conducted experiments com—
paring source domain viability for each of the nine datasets and
two stage transfer viability using ImageNet pretrained weights. To
demonstrate the validity of our transfer learning framework and to
visualize the learned knowledge from one dataset to another, we
use t—SNE and Grad—CAM to show the change in latent space rep-
resentation and class activations, respectively. Additionally, we ap—
ply weight distillation to top performing models to aggregate knowl—
edge across datasets. We find that knowledge is transferred between
histopathological datasets, and that hard to learn, multi—class datasets
benefit most from transfer learning. Datasets that share a common
organ class or common tasks tend to also share knowledge more ef—
fectively, especially when the constraint of learning low level fea—
tures, governed by dataset size, is removed through ImageNet pre—
training. These effects are also displayed through the t—SNE and
Grad—CAM analysis, with more disentangled latent representations
and more meaningful class activations, respectively. Weight distilla—
tion harnesses the different learned approaches by models trained on
different source domains, allowing combined models to reach higher
than ImageNet pretraining accuracies, with much less computational
cost compared to training on ImageNet. We present these finding in
an effort to push for a more data—driven approach to transfer leam—
ing in CPath, and to create a future where CPath knowledge can be
shared between any number of datasets.
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