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ABSTRACT

An important amount of work has been devoted to the task of
music classification. Despite promising results achieved by
convolutional neural networks, there still exists a gap left to
be filled for such models to perform well in real-world ap-
plications. In this work, we address the issue of ambiguity
that can arise in many classification problems. We propose
a method based on adaptive label smoothing that aims at im-
plicitly modelling perceptual vagueness among classes to im-
prove both training and testing performances. We assess our
method using two state-of-the-art CNN architectures for au-
dio classification on a variety of music mood and genre clas-
sification tasks. We show that the proposed strategy brings
consistent improvements over the traditional approach, signif-
icantly improves generalization to external audio collections
and emphasizes how crucial information carried by labels can
be in an ambiguous music classification context.

Index Terms— Music classification, Deep learning, La-
bel distribution learning, Generalization

1. INTRODUCTION

Automatic music classification has been extensively ad-
dressed and remains an active area of research. Although
recent improvements have been possible through the use of
convolutional neural networks (CNN) architectures appropri-
ate for such tasks [1-3], abstract notions such as genre or
mood depend on high-level characteristics that most exist-
ing models fail at capturing explicitly. Many classification
problems can be subject to ambiguity among classes and dis-
agreements among raters when asked to provide ground truth.
As most of the current classifiers follow supervised learning
paradigms, their performance is directly dependent on the
quality of the labels they are provided with during training.
In this work we propose a method that aims at carefully
transforming labels distribution to limit overfitting in small
datasets scenarios and ultimately improve generalization to
out-of-sample data. We reformulate the task of classification
as a label distribution learning problem. To obtain a probabil-
ity distribution over all classes for each track, we learn a linear
projection of the data that better approximates the ambiguity
of each song. This paper is organized as follows: we first de-

fine the notions of ambiguity and subjectivity and introduce
the label distribution learning technique; we then describe in
more detail the method we propose and present the differ-
ent experiments performed to assess its efficiency; finally, we
discuss the overall feasibility of our approach and give further
axes of improvements.

2. BACKGROUND

The notion of ambiguity can be formally described as an un-
certainty among ground-truth labels. In some cases, label am-
biguity is inherent to the task and obtaining accurate labels
turns out to be a complex and exhausting process. Similarly,
label subjectivity refers to the implication of raters’ feelings,
perception or experiences into the annotation process. When
building a dataset, if neither of these elements are taken into
account, the resulting label attribution of all training exam-
ples might fail at representing the inherent nature of the clas-
sification task. To alleviate this issue, previous studies in do-
mains such as age recognition [4], head-pose estimation [5]
or semantic segmentation [6] have benefited from an explicit
consideration of ambiguity through label distribution learn-
ing. The same conclusion could potentially be drawn in the
context of music classification, where concepts such as mood
or genre heavily depend on perceptual, cultural and represen-
tation aspects [7-10].

Formally introduced by Gao et al. in [11], the label dis-
tribution learning (LDL) paradigm aims at converting origi-
nal labels to discrete label distributions. Let X = R” de-
note the input space and Y = {y;}% | denote the complete
set of labels. Given a training set S = {(x;,y;)}/, the
goal of LDL is to learn a conditional probability mass func-
tion p(y | x) from S, where x € X and y € Y. To trans-
form the label vectors of each training instance [12] : let
y: € {0;1}¥ be the original one-hot encoded label vector
of x; € X where K denotes the total number of classes,
the label distribution d; of x; is recovered from y; such that
d; € [0;1]¥ and Zszl d¥ = 1. Then, the final training set
becomes S = {(x;,d;) | 1 < ¢ < n}. Unlike the teacher-
student method that has proven to be efficient for tasks such
as music tagging [13], our approach does not rely on any
deep learning-based model to infer pseudo-labels, and thus,
can easily be applied on small datasets.



3. METHOD

We propose a model and task-agnostic method which aims
at enhancing labels for ambiguous music classification tasks.
First, a set of features is computed from each audio extract.
Then, we apply a linear mapping supervised by label informa-
tion that keeps training examples belonging to the same class
close to each other, given a certain distance metric, and ex-
amples from distinct classes apart. We finally apply a simple
label modification (i.e. label smoothing) algorithm. Our main
motivation is that the original feature space might not always
allow for a clear separation between the different classes, re-
sulting in label distributions of poor quality which can later
hamper training. Conceptually our approach is similar to the
teacher-student method where label smoothing algorithm acts
as a teacher generating more informative soft labels.

3.1. Data Representations

As a proof of concept, we use mel-frequency cepstral coef-
ficients (MFCC) of each signal as input, as these are widely
used in the music classification literature to account for tim-
bral information [14-16]. Let us denote by S € REXT
the MFCC feature matrix extracted for one 15 second long
segment starting with a 5 second offset after the beginning
of each audio extract, where T' is the number of segments
and K is the number of MFCC coefficients. We consider
two strategies to aggregate the MFCCs: summarizing them
through the temporal axis as the mean and standard deviation
of every coefficient (MFCC-S), and a pooling and slicing
strategy similar to the one introduced in [17] (MFCC-P).
For the latter case, we average each MFCC coefficient over
non-overlapping time windows of length M to preserve some
temporal information while reducing the dimensionality. We
obtain a pooled MFCC matrix Spooled € R xT"  where
T" = T /M, that we then stack column-wise (e.g., appending
averaged MFCC vectors for each texture window altogether).
For each audio extract, we finally end up with a vector rep-
resentation x € R where L = KT'. This representation
has the advantage of carrying both timbral and temporal in-
formation while being robust against slight time-shifts, which
makes it suitable for a wide range of classification tasks.

3.2. LMNN Mapping

We assume that label smoothing can better tackle label ambi-
guity when applied on data representations specifically suited
for the classification task addressed. We propose to decom-
pose the MFCC-P representations onto a low-dimensional
space using label information. We use the Large Margin
Nearest Neighbour (LMNN) algorithm [18] to learn a linear
transformation A of the data that keeps the k-nearest neigh-
bours of the same class close, while pushing examples from
distinct classes apart. The algorithm relies on a given dis-
tance metric (here we use the Euclidean distance) such that

the learned metric is d(x,y) =|| Ax — Ay ||o. A is learned
by solving the following optimization problem:

mln 1-=X Z da(xi,x;5)+
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where A is some positive semi-definite matrix denoting
the learned linear transformation, S is the set of pairs com-
posed of x; and its k-nearest neighbors of the same class, R
is defined as a set of triples (3, j, k) such that x; and x; share
the same label while x;, is a data point with a different label
within the same region. Finally, [.]; = max(0, .) corresponds
to a Hinge loss and A € [0, 1] is a weighting parameter that
balances the two objectives. We use the implementation of the
LMNN algorithm from the metric-learn Python library [19].
The main advantage of this method is that it operates in a
k-nearest neighbours (k-NN) setting, which makes it easily
associable with the local k-NN smoothing algorithm.

3.3. Local k-NN Smoothing

We employ a simple k-NN approach to approximate label
distributions as described in [11]. For each instance x, its
k-nearest neighbours are selected. Then, its labels’ distribu-
tion is approximated by the average labels’ distribution of its
neighbours as follows:
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where Nj(x) is the index of the k nearest neighbors of x
in the training set. In our context, the variable x will iterate
over all the training instances of the dataset. We choose not
to propagate the newly smoothed labels throughout the algo-
rithm to avoid spreading any smoothing error. From now on,
we indistinctly use label smoothing to refer to this technique.

4. EXPERIMENTS

4.1. Architectures

In order to check whether our method is influenced by the
architecture, we evaluate it using two state-of-the-art CNN
models for music classification:

* MusiCNN: a convolutional neural network that aims at cap-
turing timbral and temporal patterns using vertical and hori-
zontal convolution operations [20]. The model is composed
of 6 layers and has a total of 787, 000 trainable parameters.

* VGG: originally designed for computer vision tasks, this
convolutional neural network is built as a 5 layer stack of
128 3 x 3 convolutional filters and a has total of 605, 000
trainable parameters [21,22].



We train both architectures targeting the original binary
labels with categorical cross-entropy loss as a baseline. We
additionally measure if our method remains effective in trans-
fer learning scenarios by using public pre-trained versions of
both architectures on MSD-train [23] for audio-tagging as de-
tailed in [20,24]. Models trained with label smoothing use a
Mean Absolute Error (MAE) loss function. They are trained
for the same number of epochs as their original counterparts:
150 for transfer-learning models and 600 epochs for those
trained from scratch.

4.2. Datasets and evaluation

To highlight the importance of the metric learning step, we
consider two versions of label smoothing for evaluation:
(S4) MFCC-S + k-NN smoothing, (Sp) MFCC-P + LMNN
+ k-NN smoothing.! We apply these two variations on the
tasks detailed in Table 1: 7 mood and one genre classification
tasks using small in-house MTG datasets and two publicly
available music genre classification datasets: GTZAN? [14]
and the Music Audio Benchmark Dataset from [25] (called
genre-tzanetakis and genre-dortmund respectively). Note that
for GTZAN, we intentionally keep the mislabelled training
instances listed in [26] as they represent a typical situation of
possibly corrupted and ambiguous annotations. Each model
is trained in a 5-fold cross-validation setting. To measure
the generalization improvement, we evaluate them on a sub-
set of the MTG-Jamendo dataset’s split-0 [27] following the
methodology proposed in [24]. To avoid raters disagree-
ment issues, we selected a subset that was identically labelled
by three different annotators with labels matching the tax-
onomies of the considered tasks representing a few thousand
tracks for each of them.’

The audio extracts used in this work are sampled at 44.1
kHz. MFCC (13 coefficients) are extracted using a window
and FFT sizes of 1024 and 2048 respectively with a 50% over-
lap. For MFCC-S features, we summarize each MFCC matrix
by its descriptive statistics and later apply the label smooth-
ing method with kxy = 10 neighbours for all tasks. For
the MFCC-P features, we apply the pooling strategy on each
MFCC matrix using a time window corresponding to 1 sec-
ond (M = 86). They are then decomposed into n = 32 and
n = 64 components by the LMNN algorithm for mood and
genre classification respectively. We use kpynny = 3 neigh-
bours and a balance parameter A = 0.5 for the LMNN algo-
rithm. We train it for a maximum of 10, 000 iterations. Fi-
nally, the k-NN smoothing is applied using kxy = 10 neigh-
bours for genre and kny = 30 neighbours for mood tasks.

'We selected the input representations that worked best for each smooth-
ing method in pre-analysis.

’http://marsyas.info/downloads/datasets.html

3https://mtg.github.io/mtg- jamendo-dataset/
annotations

Datasets Classes Size

genre-dortmund alternative, blues, elec- 1820 exc.
tronic, folk-country,
funksoulrnb, jazz, pop,
raphiphop, rock

genre-tzanetakis blues, classic, country, 1000 exc.

disco, hip hop, jazz, metal,
pop, reggae, rock

genre-rosamerica classic, dance, hip hop, 400 ft.
jazz, pop, rhythm and
blues, rock, speech
mood-acoustic acoustic, not acoustic 321 ft.
mood-electronic electronic, not electronic 332 ft./exc.
mood-aggressive aggressive, not aggressive 280 ft.
mood-relaxed relaxed, not relaxed 446 ft./exc.
mood-happy happy, not happy 302 exc.
mood-sad sad, not sad 230 ft./exc.
mood-party party, not party 349 exc.
Table 1: Music collections (ft.: full tracks, exc.: excerpts).
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Fig. 1: Label distributions with LMNN mapping (dark blue)
and without (light blue), for the mood-electronic dataset.

5. DISCUSSION

Figure 1 shows the overall distribution of the newly con-
structed labels in a low-separability case. For the Sp ap-
proach, the resulting distributions are skewed towards 1,
which indicates that most songs are well anchored in their
respective class. On the contrary, label distributions are cen-
tered around 0.65* when following the S4 approach, which
indicates that the feature space implied by MFCC-S seems
to be fuzzier without any clear separation among classes.
The characteristics of these distributions and subjective lis-
tening evaluations led us to believe that the LMNN-based
transformation manages to conveniently combine acoustic
attributes contained in pooled MFCCs to spread data points
onto a space that is more faithful to class information. The
more neighbours are used by the k-NN smoothing, the more
“fine-grained” the resulting label distributions will be.

4Other experiments using the deep embeddings from the MusiCNN pre-
trained model have also led to similar results.



Architecture  Dataset Trained from scratch Pre-trained on MSD
5F Ext. 5F Ext.
None Sa Sg None Su S None Sa S None Sa SB

MusiCNN genre-dortmund 042 029 036 044 038 041 054 046 049 053 046 0.52
genre-rosamerica  0.85 0.82 0.83 065 051 059 0.8 08 083 0.73 0.58 0.69
genre-tzanetakis 0.83 077 081 052 031 047 079 076 0.77 059 046 0.56
mood-acoustic 091 092 091 078 077 079 093 092 092 0.81 0.84 0.86
mood-electronic 0.82 082 08 077 078 0.77 091 086 087 0.79 0.81 0.85
mood-aggressive  0.96 0.95 096 073 079 080 098 097 097 084 085 0.84
mood-relaxed 0.89 088 088 077 0.76 0.79 087 088 090 0.77 0.73 0.78
mood-happy 0.72 076 077 060 059 0.1 08 082 085 0.63 063 0.63
mood-sad 0.84 082 084 065 064 060 08 085 087 0.71 0.70 0.70
mood-party 090 089 088 080 079 082 090 091 091 084 085 0.85

VGG genre-dortmund 0.43 036 041 044 036 038 033 029 031 036 029 0.31
genre-rosamerica 0.87 0.81 0.85 0.65 0.51 0.65 0.64 065 066 0.50 0.47 0.66
genre-tzanetakis 0.82 080 0.82 052 049 059 064 067 0.64 0.64 0.27 0.64
mood-acoustic 0.89 094 094 080 0.77 080 090 091 089 0.80 0.79 0.83
mood-electronic 083 078 08 079 078 080 089 080 087 0.79 0.79 0.84
mood-aggressive ~ 0.97 096 097 075 080 075 093 093 092 081 083 0.81
mood-relaxed 0.83 088 090 080 0.78 0.77 0.84 084 087 0.67 0.68 0.68
mood-happy 0.82 079 078 067 063 065 083 082 082 0.61 0.61 0.61
mood-sad 0.86 085 0.8 0.69 0.66 0.70 0.83 0.83 0.83 0.65 0.63 0.62
mood-party 090 090 091 081 079 0.79 0.8 088 089 0.78 0.77 0.79

Table 2: Evaluation results. 5F: 5-fold cross-validation results, statistically significant differences over baseline according to
an independent samples t-test (P > 0.05) are marked in light grey. Ext.: External validation results (class-weighted accuracies),
no worse than the baseline are marked in grey, higher accuracies are marked in bold. None: No smoothing applied (baseline).

In a small dataset scenario, the capacity for a model to
generalize to unseen data is usually limited [24]. However, re-
sults reported in Table 2 on the external audio collection show
that the label distribution learning paradigm helps to make the
model more robust against data proceeding from different dis-
tributions. Even though the parameters used for our smooth-
ing method remained the same within each dataset’s category,
each model’s performance either improves or does not de-
grade in most classification tasks. By acting as an implicit
label augmentation, label distribution learning makes the clas-
sification task more complex and reduces the negative influ-
ence of ambiguous and mislabelled training data points. Even
though both approaches lead to consistent improvements over
the baselines, the Sg method tends to outperform the S 4 one
in most cases. However, the mood-aggressive task seems to
be straightforward enough to be efficiently improved only us-
ing the S4 approach. Additionally, the generalization im-
provement does not seem to directly depend neither on the
architecture used, nor the training strategy followed, which
makes our approach suitable for a wide variety of models and
classification tasks involving ambiguous categories. Further
improvements can be made with a simple parameter search
per classification task. For example, datasets with more than
two classes seem to require a higher LMNN output dimension
and a smaller number of neighbours used during the smooth-

ing step. Finally, results on pre-trained models show that our
approach can be used to further enhance knowledge transfer
among source and target tasks in transfer learning scenarios.

6. CONCLUSION

We have introduced a method to explicitly model ambiguity
arising in various music classification tasks. Our method
shows that carefully transforming labels can help limiting
overfitting in small datasets scenarios and ultimately improve
generalization to out-of-sample data. We experimented with
two state-of-the-art CNN architectures and a variety of mu-
sic classification tasks. In most cases, our method improved
generalization without degrading 5-fold cross-validation re-
sults. It also remains compatible with pre-trained models, and
seems to ameliorate transfer among tasks. We argue that find-
ing perceptually relevant low-dimensional spaces can greatly
boost the impact of label smoothing approaches. To better
approximate perceptual ambiguity, we suggest modifying the
triplet selection mechanism of the LMNN algorithm to make
it more robust to mislabelled data points. Finally, it would
be interesting to measure the effectiveness of our approach
on other MIR tasks indirectly involving classification such as
instrument recognition or music structure analysis.
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