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ABSTRACT
Large training datasets almost always contain examples with
inaccurate or incorrect labels. Deep Neural Networks (DNNs)
tend to overfit training label noise, resulting in poorer model
performance in practice. To address this problem, we pro-
pose a robust label correction framework combining the ideas
of small loss selection and noise correction, which learns net-
work parameters and reassigns ground truth labels iteratively.
Taking the expertise of DNNs to learn meaningful patterns
before fitting noise, our framework first trains two networks
over the current dataset with small loss selection. Based on
the classification loss and agreement loss of two networks,
we can measure the confidence of training data. More and
more confident samples are selected for label correction dur-
ing the learning process. We demonstrate our method on both
synthetic and real-world datasets with different noise types
and rates, including CIFAR-10, CIFAR-100 and Clothing1M,
where our method outperforms the baseline approaches.

Index Terms— Noise label, Image classification, Small
loss selection, Label correction, Iterative learning

1. INTRODUCTION
Deep learning has shown very impressive performance on
various vision problems. However, a practical challenge for
deep learning state-of-the-art models is that they rely on large
amounts of clean, annotated data [1, 2, 3, 4]. Collecting such
data sets is expensive or time-consuming. Large training
datasets almost always contain examples with inaccurate or
incorrect labels, resulting in overfitting to noisy samples and
poorer model performance [5, 6, 7, 8]. There are many classic
methods to prevent noise overfitting such as dropout [9] and
early stop [10], which are heuristic for noisy label learning.

A large number of algorithms have been developed for
learning with noisy labels. Small loss selection recently
achieved great success on noise-robust deep learning follow-
ing the widely used criterion: DNNs tend to learn simple pat-
terns first, then gradually memorize all samples [11, 12, 13].
These methods treat samples with small training loss as clean
ones. During the training process, clean or confident instances
are selected to update the model parameters. For instance,
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MentorNet [14] trains a Teacher-Net to provide curriculum,
in the form of weights on the training samples, to select clean
samples to guide the training of the Student-Net. Co-teaching
[15] uses two networks to determine clean samples in their
mini-batches separately and exchange the update information
with the other network. Inspired from Co-teaching, JoCoR
[16] also uses two networks, while they combine the ”agree-
ment strategy” from semi-supervised learning into noise label
tasks, which uses a joint loss to make their predictions agree.
The instances with small joint loss are selected for the back-
propagation. Experiments in JoCoR showed that it is more
effective than co-teaching. However, not all clean examples
can be selected by the network with the small loss strategy.
When the noise rate is high, the selection would further de-
crease the number of effective training samples in each batch.
Currently, there are relabelling methods learning network pa-
rameters and inferring the ground-truth labels simultaneously
without any clean dataset, such as joint optimization [17]
and PENCIL [18]. They use all data for learning so noisy
examples can be an interference in this process.

In this paper, motivated by increasing the effective train-
ing samples, we proposed a framework that combines the
noise correction with small loss selection methods to update
the network parameters and noisy labels iteratively (Fig. 1).
Each time we train relatively robust models with small loss
examples, and correct the noisy labels which the current net-
works are confident on. In the training process, we are in-
spired by JoCoR to use ”agreement strategy” to train two net-
works with a joint loss. Our contributions are as follows.

(a) We proposed a robust learning framework for both net-
work parameters and ground truth labels to handle noise label
tasks. Our method is independent of the backbone network
structure and does not need an auxiliary clean dataset. Train-
ing the network with small loss selection and updating the la-
bel of confident examples make the iterative learning process
robust. To the best of our knowledge, it is the first method in
this line. (b) We prove the effectiveness of training a stable
model over current dataset before each label correction step.
It performs better than conducting weights and label update
at each iteration. (c) We conduct extensive experiments on
both synthetic and real-world noisy datasets and our method
achieves state-of-the-art accuracy.
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Fig. 1: The iterative network learning and label correction of
proposed method. Two models are trained with a joint loss
and confident samples are selected for relabelling.

2. PROPOSED APPROACH
2.1. Notation

For multi-class classification with C classes, we have a
dataset D with N samples. D = {xi, yi}Ni=1, where xi is
the ith example with its label as yi ∈ [1, ..., C]. The set of
examples and labels are denoted as X and Y . The neural net-
work is denoted by f(x, θ), with the output of the final layer
(C-class softmax layer): p = [p1, ..., pC ]. p is the predicted
probability for each example x.

During network training in a standard classification task,
a loss function L is used to measure the distance between p
and the label y. The network parameters θ are learned by
optimizing L by gradient descent methods. In our study, the
given label Y is noisy, and our task is to jointly optimize θ
and labels Y . The learned label set is denoted as Ŷ .
2.2. Joint Training with Small Loss Selection

According to the agreement maximization principles [19, 20,
16], different models would agree on labels of most examples
and are unlikely to agree on incorrect labels. In the process of
updating θ, two different classifiers are encouraged to make
predictions closer to each other with a regularization term to
reduce divergence. Specifically, joint training uses a joint loss
to train two networks (same structure with different initializa-
tion) simultaneously. The loss function is composed of super-
vised learning loss and agreement loss as shown in Eq. 1,

Ljoint = (1− λ) ∗ Lsup + λ ∗ Lagr, (1)

where λ is a hyperparameter for linear combination and it de-
creases with the label noise rate.

The supervised learning loss Lsup is the sum of the clas-
sification loss of two networks, which is the Cross-Entropy
between predictions and labels. The agreement loss is the
term to reduce divergence between two classifiers which is
the Jensen-Shannon divergence in Eq. 2, where DKL(p1||p2)
is the Kullback–Leibler divergence.

Lagr = DKL(p1||p2) +DKL(p2||p1), (2)

Small loss examples are selected to do the back-propagation
in each iteration and a selection rate R(t) is used to control
the portion. R(t) depends on the iteration t and its schedule
is introduced in Section 2.4.
2.3. Learning with label correction
From the view of agreement maximization principles that dif-
ferent models are unlikely to agree on incorrect labels, the

joint loss would be high with both high supervised learning
loss and agreement loss over noisy labelled examples. Given
this assumption, we obtain clean labels by updating labels in
the direction to decrease Eq. 3.

min
θ1,θ2,Y

Ljoint(θ1, θ2, Y |X). (3)

In the proposed learning framework, network parameters
θ1, θ2 and class labels Y are alternatively updated: 1) Updat-
ing θ with fixed Y : With the joint loss in Eq. 1, we update
θ1 and θ2 with small loss selection. 2) Updating Y with
fixed θ1, θ2: After relatively robust models are trained on the
current dataset, part of the noisy labels are corrected.

When updating the labels Y , we want to select the labels
which are noisy and the networks are confident to update. The
examples with small agreement loss are considered as confi-
dent examples so we select the subset Dcorrection with the
least agreement loss based on the label correction rate:

Dconfident = argminD′:|D′|≥C(k)|D|Lagr(D′), (4)

where C(k) is the label correction rate which changes with
the kth label correction. Among the confident examples, we
take the noisy ones whose predicted class distributions have
large difference with the current labels. Similarly, this subset
Dnoisy can be selected with the large supervised learning loss
according to the label correction rate C(k):

Dnoisy = argmaxD′:|D′|≤C(k)|D|Lsup(D′). (5)

The subset for label correction Dcorrection will be the inter-
section of Dnoisy and Dconfident:

Dcorrection = Dconfident ∩Dnoisy. (6)

Within the selected examples, if two networks have the same
predictions on one example, the current label is updated with
the predicted class, otherwise it remains unchanged.

Instead of updating labels and parameters simultaneously
in each iteration, we train two robust models on the current
dataset before every label update step to make the correc-
tion more reliable. Since labels are not continuously updated,
there can be a large amount of changes on the dataset after
correction. We set a threshold Crestart for label correction
rate C(k) as a trigger for restarting training. When C(k) >
Crestart, a large portion of labels will be changed and we re-
train two networks from scratch with the new labelled dataset.

We can use any deep neural network as the backbone net-
work, and then equip it with the joint training and label cor-
rection to handle learning problems with noisy labels. Af-
ter the networks have been fully trained, the label correction
parts are not needed. The backbone networks alone can per-
form prediction for test examples and indicates ambiguous
ones when two networks disagree.



2.4. Training implementation

The label correction rate C(k) = τ/2 ∗ 1/k since as the num-
ber of correction time k increases, fewer examples are noise-
labelled. The raw noise ratio τ decreases after label update
according to the size of last Dcorrection:

τk = τk−1 −
|Dcorrection|
|D|

. (7)

The schedule of R(t) = 1 − min
{

t
Tk
τ, τ

}
, where t is the

iteration and Tk = 10 for CIFAR-10 and CIFAR-100, Tk = 5
for Clothing1M.

The training of our method is implemented through two
stages: (1) Iterative optimization of network parameters θ1, θ2
and labels Ŷ . (2) Fine-tuning θ1 and θ2 with fixed labels Ŷ .

3. EXPERIMENTS
3.1. Datasets

Our method is demonstrated on synthetic datasets CIFAR-10,
CIFAR-100, and noisy dataset Clothing1M [21], using the
PyTorch framework. We corrupted synthetic datasets with
symmetric and asymmetric noise manually. The asymmet-
ric noise is to simulate that labellers may make mistakes only
within very similar classes.

A label transition matrix Q is used to flip clean label y
to noise label ŷ [22, 23]. In the symmetric noise setup, label
noise is uniformly distributed among all categories, and the
label noise ratio is τ ∈ [0, 1]. For each example, the noise-
contaminated label has 1 − τ probability to remain correct,
but has τ probability to be flipped uniformly with other c− 1
labels. All datasets have the same symmetric noise setting.
As for asymmetric noise, The noisy labels of CIFAR-10 were
generated by mapping truck → automobile, deer → horse,
bird → airplane and cat ↔ dog [18] with probability τ .
In CIFAR-100, 100 classes are grouped into 20 5-size super-
classes and each class is flipped into the next circularly with
noise ratio τ within each superclass [16].

Clothing1M is a large-scale dataset from 14 clothing
classes with noisy labels. The estimated noise level is 40%
[21]. we use the 1M images with noisy labels for training,
the 14k and 10k clean data for validation and test, respec-
tively. We resize the image to 256 ∗ 256 and crop the middle
224 ∗ 224 as input, then perform normalization. This dataset
is seriously imbalanced among different classes and the label
mistakes mostly happen between similar classes. PENCIL
[18] randomly selected a small balanced subset to relieve the
difficulty caused by imbalance.

3.2. Implementation details

We use a 7-layer CNN network architecture for CIFAR-10
and CIFAR-100 and 18-layer ResNet for Clothing1M, which
are same in JoCoR for fair comparison.

For experiments on CIFAR-10 and CIFAR-100, Adam op-
timizer with momentum=0.9 is used and the batch size is 128.

An initial learning rate of 0.001 is used in the first 250 epochs
for iterative parameter and label learning. For fine-tuning the
network with fixed labels, we run 50 epochs and linearly de-
cay the learning rate from 0.001 to zero. The λ in Eq. 1
balances the supervised learning loss and agreement loss. We
linearly decrease λ from 0.9 to 0.7 after each label update and
keep 0.7 at the fine-tuning stage. The label update interval is
50 epochs. The label correction threshold Cretrain = 5%.

In Clothing1M, the same Adam optimizer is used and the
batch size is 64. We run 15 epochs in iterative optimization
and 10 epochs for fine-tuning. The learning rate for the first 5
epochs is 8 × 10−4, second 10 epochs is 5 × 10−4, then for
fine-tuning is 5× 10−5. λ is set to 0.85. Tupdate = 5 and the
retraining threshold Cretrain = 5%.

3.3. Comparison with baselines
We compare our method with following baseline algo-
rithms on each dataset: F-correction [23], Co-teaching [15],
Co-teaching+ [24], JoCoR [16], PENCIL [18], DivideMix
(Clothing1M dataset) [25] and LDMI [26]. The performance
of standard deep networks training on noisy datasets is also
used as a simple baseline. The performance of PENCIL,
DivideMix and LDMI is based on our implementation, and
the others are quoted from [16].

CIFAR-10: The test accuracy and standard deviation
compared with baselines over CIFAR-10 are shown in Table.
1. Our method performs the best in all four cases especially
with symmetric-50% noise (+6.21). We can see as the noise
ratio increased, the standard deviation increases which indi-
cates the stability of models is affected by noise labels. Our
method has a smaller standard deviation especially in the high
noise rate. Our standard deviation is 0.89 in symmetry-80%,
while that of the other top-3 methods co-teaching, JoCoR and
PENCIL are 2.22, 3.06 and 1.86, respectively.

CIFAR-100: we compare our results with other baselines
on CIFAR-100 in Table 2. CIFAR-100 has a similar dataset
size to CIFAR-10 while with 10 times of classes, thus the clas-
sification is more challenging. Our method is still the overall
accuracy winner. In symmetry-20% and symmetry-50%, Our
method and JoCoR works significantly better than other meth-
ods and ours has an advantage of +1.6 ∼ 1.9 over JoCoR. In
the hardest case of symmetry-80%, JoCoR ties together with
Co-teaching and ours has +3.36 test accuracy. The standard
classifier, F-correction and PENCIL fail in this case with the
accuracy below 5%. In terms of asymmetry-40% noise, Co-
teaching+ performs better than other baselines with 33.62%
accuracy whereas that of ours is 34.41%.

Clothing1M: We demonstrate our method on real-world
noisy labels with Clothing1M dataset, which includes a lot of
unknown structure (asymmetric) noise. The results are shown
in Table. 3, where “Best” denotes the test accuracy of the
epoch where the validation accuracy is optimal and “last” de-
notes the test accuracy of the last epoch. We use the complete
noisy training set of Clothing1M instead of the small pseudo-
balanced subset. Our method achieved SOTA performance



Table 1: Average test accuracy (%) and standard deviation on CIFAR-10 of 5 trials.
Flipping Rate Standard F-correction Co-teaching Co-teaching+ JoCoR PENCIL LDMI Ours

Symmetry-20% 69.18 ± 0.52 68.74 ± 0.20 78.23 ± 0.27 78.71 ± 0.34 85.73 ± 0.19 81.35 ± 0.32 80.52 86.84 ± 0.18
Symmetry-50% 42.71 ± 0.42 42.19 ± 0.60 71.30 ± 0.13 57.05 ± 0.54 79.41 ± 0.25 69.29 ±0.78 73.21 85.62 ± 0.48
Symmetry-80% 16.24 ± 0.39 15.88 ± 0.42 26.58 ± 2.22 24.19 ± 2.74 27.78 ± 3.06 25.30± 1.86 21.48 29.01 ± 0.89

Asymmetry-40% 69.43 ± 0.33 70.60 ± 0.40 73.78 ± 0.22 68.84 ± 0.20 76.36 ± 0.49 68.53±0.48 65.12 76.83 ± 0.29

Table 2: Average test accuracy (%) and standard deviation on CIFAR-100 of 5 trials.
Flipping Rate Standard F-correction Co-teaching Co-teaching+ JoCoR PENCIL LDMI Ours

Symmetry-20% 35.14 ± 0.44 37.95 ± 0.10 43.73 ± 0.16 49.27 ± 0.03 53.01 ± 0.04 43.61 ±0.23 48.95 54.90 ± 0.07
Symmetry-50% 16.97 ± 0.40 24.98 ± 1.82 34.96 ± 0.50 40.04 ± 0.70 43.49 ± 0.46 26.41 ±0.51 39.21 45.12 ± 0.42
Symmetry-80% 4.41 ± 0.14 2.10 ± 2.23 15.15 ± 0.46 13.44 ± 0.37 15.49 ± 0.98 3.65±0.77 10.65 18.85 ± 0.59

Asymmetry-40% 27.29 ± 0.25 25.94 ± 0.44 28.35 ± 0.25 33.62 ± 0.39 32.70 ± 0.35 27.32 ±0.42 31.34 34.41 ± 0.72

Table 3: Average accuracy (%) on Clothing1M test set.
Methods Best Last
Standard 67.22 64.68

F-correction [23] 68.93 65.36
Co-teaching [15] 69.21 68.51

Co-teaching+ [24] 59.32 58.79
JoCoR [16] 70.30 69.79

PENCIL [18] 69.48 68.48
LDMI [26] 70.79 70.02

DivideMix [25] 68.24 67.19
Ours 71.63 69.97

in ”Best”. In the last epoch, our performance is slightly de-
creased because of overfitting and 0.05% lower than LDMI .
The accuracy drop can be improved by stopping training early
according to the validation set in practice.

3.4. Ablation Study

We conduct ablation study for analyzing the effect of label
update interval and retraining. The experiments are set up on
CIFAR-10 with Symmetry-50% noise.

Label Update Interval: Instead of referring clean labels
in each iteration [17, 18], our label correction is intermittent.
With label update intervals, two classifiers can be trained on
the current dataset with small loss selection strategy and try
to maximize the use of current data. The agreement maxi-
mization principle will be more reliable with these relatively
robust models. In this experiment, we set the label update
interval to 50 epochs and compared it with the continuous up-
date in each iteration. Similar to Joint optimization [17], a
pre-trained backbone is needed for continuous label update.
We train two networks for 50 epochs before the label update
both in continuous and intermittent methods.

Fig. 2 (a) and (b) show the test accuracy and number of
correct labels versus epochs, respectively. In Fig. 2 (a), the
large drop of the test accuracy indicates the trigger of retrain-
ing when the label correction rate is large. In continuous up-
date, the label correction is smooth after the first correction.
For fair comparison, we retrain networks with new labels af-
ter the first update. We can see the test accuracy with update
intervals is better than continuous update, and the number of
correct labels is significantly higher than the latter. It proves
the effectiveness of using relatively robust models to do the
label correction. Note that continuous correction has an av-

(a) (b)

(c) (d)
Fig. 2: Comparison of ablation study over CIFAR-10. (a)(b):
label update interval; (c)(d): retraining after correction.

erage test accuracy of 82.1%, which still maintains an advan-
tage over the other methods in Table. 1.

Retraining After Correction Generally the network
training with a fixed dataset is continuous for a large amount
of epochs until it is stable. In Joint optimization and PENCIL
[17, 18] with label update, their labels and weights learning
are performed in every iteration and the dataset will not be
changed dramatically after each label correction. In terms
of our method, the labels may change a lot in every label
update, because the correction ability of networks after the
label correction interval can be improved much. In our exper-
iment, retraining the models with the updated dataset has a
better performance than continuous training as shown in Fig.
2 (c)(d). In Fig. 2 (d), the number of correct labels without
retraining is less than retraining, and it drops a lot in the last
update. Correspondingly, the test accuracy of the former is
lower than the latter. However, the mean accuracy of 82.8%
without retraining is still higher than that of other baselines.

4. CONCLUSION
We proposed a synergistic network learning and label correc-
tion methods to solve the noise label problem. Our method is
independent of the backbone network thus it is easy to apply.
We demonstrated our method with synthetic label noise on
CIFAR-10 and CIFAR-100 and real-world large scale dataset
Clothing1M with label noise. Our method is an overall win-
ner compared with the baselines.
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