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Abstract

Utterance-level intent detection and token-
level slot filling are two key tasks for nat-
ural language understanding (NLU) in task-
oriented systems. Most existing approaches
assume that only a single intent exists in an ut-
terance. However, there are often multiple in-
tents within an utterance in real-life scenarios.
In this paper, we propose a multi-intent NLU
framework, called SLIM, to jointly learn multi-
intent detection and slot filling based on BERT.
To fully exploit the existing annotation data
and capture the interactions between slots and
intents, SLIM introduces an explicit slot-intent
classifier to learn the many-to-one mapping be-
tween slots and intents. Empirical results on
three public multi-intent datasets demonstrate
(1) the superior performance of SLIM com-
pared to the current state-of-the-art for NLU
with multiple intents and (2) the benefits ob-
tained from the slot-intent classifier.

1 Introduction

Natural language understanding (NLU) is an es-
sential task for task-oriented dialog (ToD) systems.
It contains two major sub-tasks, intent detection
(ID) and slot filling (SF). Take “Listen to Westbam
album Allergic on Google music" as an example.
The task of ID is to identify the intent (“Play-
Music”) of the utterance. SF is a sequence label-
ing task to predict the slot for each token, which
are [O, O, B-artist, O, B-album, O,
B-service, I-service] using the “Inside-
outside-begining” (IOB) tagging format (Zhang
and Wang, 2016). Traditional techniques often
tackle these two tasks separately (Haffner et al.,
2003; Kim, 2014; Yao et al., 2014; Yang et al.,
2016; Vu, 2016). Recently, models that learn these
two tasks jointly achieve better performance by
capturing semantic dependencies between intent
and slots (Liu and Lane, 2016; Goo et al., 2018;
Liu et al., 2019; Chen et al., 2019; Zhang et al.,
2019; E et al., 2019; Qin et al., 2019).

GetWeather PlayMusicIntent

Utterance
Slot O    O  O       O       O  B-state I-state   O    O   O B-music O  B-artist I-artist

what is the weather for south carolina and play a   record  by michael jackson

(a) Gangadharaiah and Narayanaswamy (2019); Qin et al.
(2020): Utterance-level intent is shared by all the slots.

GetWeather PlayMusicIntent

Utterance
Slot O    O  O       O       O  B-state I-state   O    O   O B-music O  B-artist I-artist

what is the weather for south carolina and play a   record  by michael jackson

(b) SLIM: Explicit slot-level intent is used by each slot.

Figure 1: Comparison between approaches of utilizing
intent information for different slots.

The aforementioned methods assume only a
single intent in an utterance. However, multi-
ple intents often exist in one utterance in real-life
scenarios (Kim et al., 2016; Gangadharaiah and
Narayanaswamy, 2019; Qin et al., 2020; Eric et al.,
2020). Regardless of single or multiple intents, the
relationship between slots and intent(s) is many-
to-one. In single-intent utterances, all slots share
the same intent; in multi-intent scenarios, however,
different slots may correspond to different intents.
In Figure 1, the slot “south carolina” corresponds
to GetWeather, while slots “record” and “michael
jackson” should be linked to PlayMusic. Exist-
ing multi-intent NLU models (Gangadharaiah and
Narayanaswamy, 2019; Qin et al., 2020) inherit
the single-intent pattern, i.e., the utterance-level
intent label distribution is shared by all the slots
(Figure 1a). Therefore, the relationship between
slots and intents are not utilized even though they
are already annotated in most NLU datasets.

To this end, we propose SLIM (SLot-Intent
Mapping) that fully exploits the annotations to ex-
plicitly captures the mapping between slots and
intents. We add a slot-intent classifier to predict
the intent label for each slot of an utterance (Fig-
ure 1b) on top of the state-of-the-art pre-trained
model (Chen et al., 2019) based on BERT (Devlin
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et al., 2019) to jointly tackle ID and SF. In experi-
ments, we compare SLIM to a wide range of NLU
techniques on two simulated datasets (MixATIS
and MixSNIPS Qin et al. (2020)) and a real-world
dataset (DSTC4 Kim et al. (2016)). Empirical re-
sults demonstrate that SLIM achieves better per-
formance compared to the current state-of-the-art
without using extra annotation data. We analyze
and reveal that the explicit slot-intent mapping mod-
ule indeed helps the model learn faster and better.
To our best knowledge, this is the first study to ex-
plicitly link slots to their intents for better NLU in
task-oriented dialog systems.

2 Approach

2.1 Problem Setting
For an input utterance x with token sequence x =
(x1, ..., xn), the multi-intent NLU task is composed
of (1) utterance-level intent detection: predict the
multi-label intents Ix ⊂ I of the utterance, where
I is the set of possible intents, and (2) token-level
slot filling: predict the slot label for each token of
the input utterance from a set T of possible slots.
Different from existing single-intent NLU task, the
following two assumptions are made:

(a) An utterance x has at least one utterance-
level intent, i.e, |Ix| ≥ 1.

(b) Each slot sm = {xm1 , ..., xmj} is a set of j
tokens, and it is mapped to a specific slot-level
intent belonging to the utterance-level intents,
i.e, im ∈ Ix.

2.2 Model
The proposed model (SLIM) contains a shared en-
coder and three classifiers for different tasks.

Encoder We use BERT (Devlin et al., 2019) as
token sequence encoder of our model. The utter-
ance is tokenized by standard BERT tokenizer with
a special token [CLS] prepended and [SEP] ap-
pended. The output h = (hcls, h1, ..., hn, hsep) of
BERT’s encoder will be utilized for three classi-
fiers, where hk ∈ Rd.

Intent Classifier and Slot Classifier Utterance-
level intent detection is accomplished by the intent
classifier. To classify the intent yi, we use sigmoid
as the activation function after feeding hcls into a
output network by:

yi = Sigmoid(W ihcls + bi), (1)

where W i ∈ R|I|×d, and each dimension of yi ∈
R|I| represents the probability of an intent label. In
the slot filling task, to predict the slot ysk at position
k, we apply softmax after feeding hk into a separate
slot classification network as:

ysk = Softmax(W shk + bs), (2)

where W s ∈ R|T |×d , and ysk ∈ R|T | is the slot
probability distribution for token xk with k ∈
{1, . . . , n}. Intent classifier and slot classifier are
formulated similarly as Chen et al. (2019), except
that intent detection is formulated as a multi-label
classification task.

Slot-Intent Classifier To explicitly capture the
relation between slots and intents, we predict
the slot-level intent for each slot sm. First, we
compute the representation rm of a slot sm =
{xm1 , ..., xmj} by a mean pooling of the token rep-
resentations in this slot by: rm = 1/j

∑j
i=1 hmi .

Afterward, we concatenate the global utterance rep-
resentation hcls with rm and compute an uncon-
strained slot-intent prediction ylm as:

ylm = Softmax(W l[hcls|rm] + bl), (3)

where W l ∈ R|I|×2d, and | indicates vector con-
catenation. To better align the above slot-intent
prediction with the predicted utterance intent (as-
sumption (b)), we propose an intent-constrained at-
tention. It computes a final constrained slot-intent
prediction ypm by an element-wise multiplication
between the utterance-level intent prediction yi and
unconstrained slot-intent prediction ylm as:

ypm = yi � ylm (4)

2.3 Training Objective
The global objective of SLIM is to maximize
p(yi, ys, yp|x), and it can be decomposed for to-
kens inside and outside of slots as:

∏
m

p(yi, yssm , y
p
m|x)︸ ︷︷ ︸

inside each slot

∏
j /∈∪msm

p(yi, ysj |x)

︸ ︷︷ ︸
Γ: outside the slots

(5)

=
∏
m

p(yi, yssm |x) · p(ypm|yi, yssm , x) · Γ (6)

∝ p(yi|x)
n∏

k=1

p(ysk|x)
∏
m

p(ypm|yi, ys, x) (7)

= p(yi|x)︸ ︷︷ ︸
ID

n∏
k=1

p(ysk|x)︸ ︷︷ ︸
SF

∏
m

p(ypm|yi, yssm , x)︸ ︷︷ ︸
Slot-Intent Classification

(8)
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Figure 2: Illustration of our model SLIM. The lower part is the BERT encoder. On the top, from left to right, they
are the intent classifier (for ID), the slot-intent classifier, and the slot classifier (for SF) respectively.

In equation 8, the first two terms are the objec-
tives of ID and SF, and the last term is the objective
of slot-intent mapping. ID is trained with binary
cross-entropy loss for multi-intent detection, while
the two other terms are trained with regular cross-
entropy loss. Because the slot-intent prediction
ypm is conditional on the predicted utterance in-
tent yi and slot label yssm of the slot, parameters
for ID and SF will also be updated when training
the slot-intent classifier. The loss of SLIM is a
weighted sum of losses from these three classifiers.
An overview model pipeline of SLIM is illustrated
in Figure 2.

3 Experiment and Analysis

Dataset We evaluate our approach on three multi-
intent SLU datasets. MixSNIPS (Qin et al.,
2020) contains 39,776/2,198/2,199 utterances for
train/validation/test. It is created based on the
Snips personal voice assistant (Coucke et al., 2018).
MixATIS (Qin et al., 2020) is constructed from
ATIS dataset (Hemphill et al., 1990), containing
13,161/759/828 utterances for train/validation/test.
DSTC4 (Kim et al., 2016) contains multi-intent
human-human dialogues with 5,308/2,098/1,865
utterances for train/validation/test. More details on
these datasets are provided in Appendix A.4.

Training Details We use English uncased BERT-
Base model, containing 12 layers, 768 hidden
states, and 12 heads. The max sequence length is
50, and training batch size is 32. Hyper-parameters

of SLIM are tuned by a randomized search (see Ap-
pendix A.3) based on the semantic frame accuracy
on validation set. Dropout rate is 0.2 for the output
layers of all three classifiers. In Eq. (8), the losses
of ID and slot-intent classifier are weighted by 1,
and the loss of SF is weighted by 2. We train SLIM
for maximum 20 epochs, and the early stop pa-
tience is 3 epochs. For the slot-intent classifier, we
use slots provided by ground truth during training,
while the predicted slots are used during inference.

Baselines We compare SLIM with both single-
intent and multi-intent models. When evaluat-
ing single-intent models on the multi-intent task,
we follow Gangadharaiah and Narayanaswamy
(2019); Qin et al. (2020) to concatenate multiple
intents with ‘#’ into a single intent. On MixATIS
and MixSNIPS, we compare previous single-intent
models: Bi-Model (Wang et al., 2018), SF-ID (E
et al., 2019), Stack-Propagation (Qin et al., 2019)
and recent multi-intent models: Joint Multiple ID-
SF (Gangadharaiah and Narayanaswamy, 2019),
AGIF (Qin et al., 2020). On DSTC4, we com-
pare SLIM with state-of-the-art single-intent model
Stack-Propagation (Qin et al., 2019) and multi-
intent model AGIF (Qin et al., 2020).

Overall Results We evaluate the performance of
different methods using three metrics: F1 score of
slot filling (Slot F1), accuracy of intent detection
(Intent Acc), and semantic frame accuracy (SeFr
Acc) as in Gangadharaiah and Narayanaswamy



Model MixATIS MixSNIPS
Slot F1 Intent Acc SeFr Acc Slot F1 Intent Acc SeFr Acc

Bi-Model† (Wang et al., 2018) 85.5 72.3 39.1 86.8 95.3 53.9
SF-ID† (E et al., 2019) 87.7 63.7 36.2 89.6 96.3 59.3
Stack-Propagation†§ (Qin et al., 2019) 86.6 76.0 42.8 93.9 96.4 75.5
Joint Multiple ID-SF‡ (2019) 87.5 73.1 38.1 91.0 95.7 66.6
AGIF‡§ (Qin et al., 2020) 88.1 75.8 44.5 94.5 96.5 76.4
SLIM (w/o slot-intent classifier) 85.6 77.1 46.3 96.2 96.8 82.3
SLIM (w/o intent-constrained attention) 87.2 75.6 46.4 96.5 96.0 83.6
SLIM 88.5 78.3 47.6 96.5 97.2 84.0

Table 1: Results on two multi-intent datasets. † or ‡ denotes single-intent or multi-intent model respectively.
Results of models with † and ‡ are taken from Qin et al. (2020). Models with § indicate the previous state-of-the-
art solutions. Bold numbers are the best results in each column.

Model DSTC4
Slot F1 Intent Acc SeFr Acc

Stack-Propagation† 56.4 35.8 20.7
AGIF‡ 57.6 33.0 19.4
SLIM 61.1 36.7 21.3

Table 2: Results on DSTC4. † or ‡ denotes single-intent
or multi-intent model respectively. Bold numbers are
the best results in each column.

(2019) and Qin et al. (2020). “SeFr Acc” con-
siders the prediction of an utterance to be correct
when slots and intents are all accurate. Table 1 sum-
marizes different models’ performances on Mix-
ATIS and MixSNIPS. We observe that SLIM out-
performs other baselines w.r.t. all three metrics,
especially on the semantic frame accuracy. On Slot
F1 and Intent Acc, SLIM outperforms the previ-
ous start-of-the-art (AGIF) by 0.4%-2.5%. More
importantly, SLIM improves the semantic frame
accuracy compared to AGIF by 3.1% and 7.6% on
two datasets respectively. This result indicates that
SLIM effectively improves the joint correctness for
predicting intents and slots for understanding an ut-
terance. Table 2 summarizes the results on the real-
world DSTC4 dataset, and similar performance
patterns can be observed as in Table 1. Moreover,
SLIM also notably improves Slot F1 on this dataset
(3.5% and 4.7% gain over the two baselines), indi-
cating that SLIM can also strengthen token-level
prediction in addition to the large utterance-level
improvements in Table 1.

Ablation Study We compare SLIM with two
simplified versions, w/o slot-intent classifier 1 and
w/o intent-constrained attention, to analyze how
the slot-intent classifier and its intent-constrained
attention affect the performance and the training
process. From Table 1 (Bottom), we can see that

1This version degenerates to Chen et al. (2019) as men-
tioned in Sec. 2.2

Figure 3: Intent Acc and SeFr Acc on MixATIS valida-
tion dataset after each training epoch.

dropping these two components impairs the perfor-
mance of SLIM. Besides the lower semantic frame
accuracy, dropping slot-intent classifier mainly de-
grades Slot F1, and dropping intent-constrained
attention mainly degrades Intent Acc. Furthermore,
we plot the learning curves of these three meth-
ods on MixATIS’s validation set in Figure 3. We
can observe that SLIM converges faster and bet-
ter compared to the two simplified versions, which
demonstrates the benefits of the slot-intent classi-
fier with intent-constrained attention.

4 Conclusion

In this paper, we propose SLIM for multi-intent
NLU in task-oriented dialog systems. SLIM explic-
itly utilizes the relation between slots and intents
by mapping slots to the corresponding intent. Ex-
perimental results on three public datasets show
that SLIM outperforms the previous state-of-the-
art NLU models. Our findings may inspire future
studies to better exploit the relationship between
slots and intent for complicated NLU scenarios in
task-oriented dialog systems.
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0 0 0 000001/2000 1/2

0 0 0 00000000 1

0 0 0 00000000 1/2 1/2

0 0

0 0 0

0 0

0 0 0

0 0 0 00000000 0 0 0 0 0

0 0 0 00000000 0 0 0 0 0
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Figure 4: Illustration of our slot representation mechanism. In the example sentence above, we have in three actual
slots and three additional padding slots. The representation rm of m-th slot, where m ∈ {1, . . . , 6}, is the average
of hidden states of tokens inside the slot.

Hyper-parameter Search Range
Dropout Rate {0, 0.1, 0.2, 0.3, 0.4}
Learning Rate {1e-5, 5e-5, 1e-4, 5e-4}
Loss Weight of Intent Classifier {0.5, 1, 2}
Loss Weight of Slot classifier {0.5, 1, 2}
Loss Weight of Slot-Intent Classifier {0.5, 1, 2}

Table 3: Hyper-parameter search range of our pro-
posed SLIM model. Bold numbers indicate our choice
of hyper-parameters.

Appendix
A Reproducibility Checklist

A.1 Computing Infrastructure and
Computation Time

All experiments are conducted using a single
GeForce GTX TITAN X GPU. When training for
10 epochs, time costs are approximately 1 hour, 45
minutes and 30 minutes on MixSNIPS, MixATIS,
and DSTC4 respectively.

A.2 Number of Parameters

SLIM includes one BERT encoder and three clas-
sifiers. Compared with BERT, the parameter size
of three output networks is much smaller and is
dependent on the number of intent labels (|I|) and
slot labels (|T |) in the target dataset. Therefore, the
number of parameters in SLIM is marginally larger
than BERT, which is around 110 million.

A.3 Hyper-parameter Search

In total, we have 5 hyper-parameters to configure:
dropout rate, learning rate, the weight of losses
for intent classifier, slot classifier and slot-intent
classifier. We randomized search with 30 trials for
the best setting to maximize the semantic frame
accuracy on validation set. Detailed search range
and our choice of hyper-parameters are given in
Table 3.

Dataset # of Intent Labels # of Slot Labels
MixSNIPS 7 71
MixATIS 21 118
DSTC4 20 90

Table 4: Summary of the number (|I|) of intent labels
and the number (|T |) of slot labels in MixSNIPS, Mix-
ATIS and DSTC4.

Dataset
# of Sentences # of Intent(s)

1 2 3 4

MixSNIPS 8,277 22,499 9,000 -
MixATIS 1,118 8,444 3,599 -
DSTC4 3,963 1,240 100 5

Table 5: Summary of number of utterances with dif-
ferent numbers of intents in MixSNIPS, MixATIS and
DSTC4.

A.4 Detailed Dataset Specifications
Table 4 summarizes the number of intent labels
and slot labels in the training set of MixSNIPS,
MixATIS, and DSTC4. Table 5 reports the statistics
of number of intents in utterances. For DSTC4, we
split the training and validation data, because the
original test data are no longer accessible.

B Implementation Details on Slot
Representation

Since the number of slots varies between utterances,
to keep the SLIM model running in batch mode,
we pad the number of slots in each utterance to
6. We observe that 6 is the 99-th percentile of
the number of slots in an utterance in real-world
multi-intent dataset DSTC4. We pad slots in each
utterance to 6 in order to strike a balance between
the memory consumption and coverage of most
slots in utterances. An illustrative example is given
in Figure 4. Each mask extracts a different slot in
the utterance. The actual number of slots in this
utterance is three, and we have three more padding
masks with all zeros.


