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ABSTRACT 

 
Convolutional neural networks (CNNs) and their variants 
have been successfully applied to the electroencephalogram 
(EEG) based motor imagery (MI) decoding task. However, 
these CNN-based algorithms generally have limitations in 
perceiving global temporal dependencies of EEG signals. 
Besides, they also ignore the diverse contributions of 
different EEG channels to the classification task. To address 
such issues, a novel channel attention based MLP-Mixer 
network (CAMLP-Net) is proposed for EEG-based MI 
decoding. Specifically, the MLP-based architecture is applied 
in this network to capture the temporal and spatial 
information. The attention mechanism is further embedded 
into MLP-Mixer to adaptively exploit the importance of 
different EEG channels. Therefore, the proposed CAMLP-
Net can effectively learn more global temporal and spatial 
information. The experimental results on the newly built MI-
2 dataset indicate that our proposed CAMLP-Net achieves 
superior classification performance over all the compared 
algorithms. 
 

Index Terms— motor imagery, electroencephalography, 
multi-layer perceptron, channel attention 
 

1. INTRODUCTION 
 
Motor imagery (MI) is one of the classic paradigms in the 
brain-computer interface (BCI) to decode users’ intentions 
through electroencephalography (EEG) [1, 2]. Various 
machine learning methods, including deep learning (DL) 
approaches, have been proposed for EEG-based MI decoding 
[3, 4]. 

The DL-based methods can be divided into two 
categories: one applies the deep neural networks, such as 
stacked auto-encoder and deep belief networks, to the hand-
crafted features to further improve the feature representation 
[5, 6], and the other establishes DL models, such as 
convolutional neural networks (CNNs), in an end-to-end 
manner to deal with the raw EEG signals [7]. The latter has 
attracted considerable attention in recent years, due to the 
unique advantage of eliminating the need for handcrafted 
feature extraction. 

These CNN-based methods for MI decoding usually 
compact the EEG signals along spatial channels into vectors 

and effectively capture the temporal features by convolution 
operation [8, 9]. However, they generally suffer from the 
limitation in perceiving global dependencies from both the 
temporal and spatial views because of the local nature of 
convolution [10]. Consequently, some crucial information 
related to long-range dependencies are ignored in feature 
learning. Therefore, it still has great room to improve the DL-
based methods for MI decoding.  

More recently, the classical multi-layer perceptron (MLP) 
has come back as a robust alternative to CNN [11, 12]. The 
newly proposed MLP-Mixer model, which consists of several 
stacked Mixer layers, attains competitive performance on 
image classification benchmarks [11]. Different from the 
convolution operation in CNN, the novel Mixer layers in 
MLP-Mixer only rely on the repeated implementation of 
Layer Norm and MLP either in spatial locations or feature 
channels. This conceptually and technically simple 
architecture allows the global spatial features communication 
between different special locations, and then the long-range 
dependencies of entire images are covered for the following 
processing. The MLP-Mixer thus has great potential to 
explore the advantage of the new MLP-based networks to 
capture the global dependencies in EEG signals for MI 
decoding. 

On the other hand, different brain regions have different 
degrees of correlation with MI tasks [13]. However, the 
current CNN-based works mainly give equal treatment to all 
EEG channels and inevitably neglect the importance of some 
specific channels for MI tasks. Consequently, it cannot make 
full use of the spatial information of EEG. It is worth noting 
that the MLP-Mixer only consists of several cascaded fully 
connected components, and thus it cannot discriminate the 
importance of different EEG channels. 

The attention mechanism is an effective strategy for 
feature selection, which guides the network to focus on the 
salient parts [14]. Since the different EEG channels 
contribute differently in MI decoding, the attention 
mechanism can automatically pick out the important channels 
and improve their contributions for classification. Hence, the 
attention mechanism should skip redundant information and 
benefit the learning of useful spatial features in MLP-Mixer 
for the EEG-based MI decoding task. 

In this work, we propose a channel attention based MLP-
Mixer network (CAMLP-Net) for MI decoding with EEG. 
The novel CAMLP-Net is mainly stacked by several 



independent CAMLP blocks, each of which is composed of a 
channel attention unit (CAU) and a time mixing unit (TMU). 
The former aims to learn the fine-grained spatial information, 
while the latter captures global temporal information. 
Therefore, CAMLP-Net can effectively learn both global 
temporal and spatial information for MI decoding. The 
experimental results on a public dataset indicate the superior 
performance of CAMLP-Net.   

The main contributions of this work can be summarized 
as follows: 
1) We propose to apply the newly developed MLP-based 

architecture to the EEG-based classification task. 
Specifically, in CAMLP-Net, each EEG channel is 
treated as the individual patch in the original MLP-
Mixer for further linear projection, which can efficiently 
capture the global temporal information to promote 
feature representation. To the best of our knowledge, 
this is the first work in the field of signal classification 
based on the MLP-Mixer architecture. 

2) We further develop a channel attention based MLP-
Mixer by embedding the attention mechanism into 
MLP-Mixer. This adaptive channel selection strategy 
can effectively exploit the importance of different EEG 
channels, and skip redundant information to promote 
spatial feature representation. Therefore, the proposed 
CAMLP-Net can learn more global temporal and spatial 
information. 
 

2. METHODOLOGY 
 
Figure 1 illustrates the architecture of the proposed CAMLP-
Net, which contains three modules: 1D-CNN-based local 
encoder module, CAMLP-Mixer module, and classifier 
module. The 1D-CNN-based local encoder is applied to 
obtain the local temporal information for each channel of the 
raw EEG slices. In the CAMLP-Mixer module, CAU is 
employed to gain the global special information and exploit 
the importance of different EEG channels, while TMU is 
applied to learn the long-range temporal information. The 
classifier module including global average pooling and linear 
layer is used to predict decoding category for slice samples. 

The general pipeline of the proposed CAMLP-Net for the 
EEG-based MI decoding task is described as follows:  
1) During the training stage, all trial samples in the training 

set are divided into slices for training CAMLP-Net 
model. The shuffle strategy is then applied to these slices 
before feeding them into the CAMLP-Net. The trained 
CAMLP-Net model thus performs MI decoding task on 
each multi-channel EEG slice. 

2) During the inference stage, each trial sample is 
segmented into multiple slice data and fed together into 
the trained CAMLP-Net model to obtain the prediction 
of each slice. The outputs from CAMLP-Net model are 
integrated by ensemble scheme for MI decoding result of 
the trial sample. 
The core parts of our proposed approach, including the 

local encoder and the CAMLP-Mixer module, will be 
presented in detail in the following sections. 
 
2.1. Local encoder 
 
Considering the randomness, poor spatial resolution, and 
signal-to-noise ratio of EEG signals, it is challenging to 
directly feed them into the MLP-based network for 
classification. Thus, the local encoder is applied for 
preliminary embedding to gain the latent representation. 

The 1D-CNN-based local encoder consists of three 
convolution layers, and each convolution layer is followed by 
a batch normalization layer. The number of convolution 
kernels with kernel size of k for the three layers are [n, 2n, 
4n]. Given an input representation C Tx ×∈  , where C 
represents the number of EEG channels, and T represents the 
number of input sample points. The average pooling with a 
kernel size of k is applied between the second and the last 
convolution layer to function the time sequence for each 
channel of x and maps: T L→ 

, TL
k

= , where L indicates the 
size of the time dimension after the local encoder. It should 
be noted that the local feature encoding only aims to enrich 
the local representations of EEG in the time domain. 
Therefore, the number of channels is always kept constant 
throughout this process to ensure that the spatial structure 
information is not scrambled. 

 

 
Fig. 1. The overall architecture of our proposed CAMLP-Net. C represents the number of EEG channels, and N indicates the 

number of CAMLP blocks.



2.2. Channel attention MLP-Mixer module 
 
After the preliminary embedding of the local encoder above, 
the local features of each channel are obtained, but the global 
temporal information and channel correlation are still lacking. 
To capture the long-range dependencies and optimize the 
spatial information of EEG signals, the CAMLP-Mixer 
module applies MLP-based architecture to capture global 
spatial representations and temporal information, 
respectively. Moreover, to skip redundant information of 
EEG channels, an attention-based mechanism is adopted for 
channel features selection. 

The overview of the CAMLP-Mixer module proposed in 
this paper is shown in Fig.2. It is stacked by N CAMLP blocks, 
each of which is composed of two Layer Norm layers, a CAU, 
and a TMU. For convenience, the basic Mixing Unit (MU), 
including two fully connected layers and a nonlinear 
activation function, can be expressed as: 
 

1 2 2 1( ) ( ( ))+MU x W W x b bσ= +                        (1) 
 

where ( )σ ⋅  represents the LeakyReLU activation function, 
1W , 2W indicates the weights of the linear projections and 1b ,

2b  are the biases. 
 

 
Fig.2. Overview of the CAMLP-Mixer module.  

 
The CAU allows temporal features to communicate 

between different EEG channels. To obtain the information 
of channel dimension, the transpose of the input matrix is 
necessary. Concretely, given a feature map C Lx ×∈  
generated by the local encoder, x was transposed to L Cx ×∈  
to facilitate the process of mixing projection in the channel 
dimension. To gain the connections between different 
channels, the mixing projection means the number of 
channels of x maps: C D C→ →  

, where D represents the 
extended dimension. The CAU can be formulated as: 

 
1 ( ( ))Tz t LayerNorm x=                         (2) 

 
1 1( )Ty x MU z= +                                  (3) 

t (·), which stands for dot product, is a key ingredient in the 
above formulation. It is an operation set up to exploit the 
importance of different EEG channels. Specifically, a set of 
weight parameters 1 Ct ×∈ initialized by Kaiming 
initialization [15] is assigned for each EEG channel. These 
adaptive channel weights are learned to enhance the presence 
of key channels in MI and suppress channels that have low 
relevance to the identification results. When i jt t= , 
, {1,..., }i j C∈ , the expression will degenerate into the basic 

MU, which means that all EEG channels contribute the same 
to the classification result. 

The TMU allows information to communicate between 
the local features of all different moments in the same channel. 
As is well-known that the imaginative behavior of the brain 
is a complete process, the temporal parts of the EEG are 
correlated. Therefore, TMU is applied to make full use of the 
relationship between any two parts of the whole time series. 
The process of TMU can be expressed as: 

 
2 1( )z LayerNorm y=                           (4) 

 
1 2( )y y MU z= +                                 (5) 

 
where 1y  is the output of the CAU, and the output y for 
subsequent processing has the same shape as the input 

C Lx ×∈ . Moreover, in TMU, the time feature dimension is 
converted: L H L→ →  

, where H indicates the hidden 
dimension. 
 

3. EXPERIMENTS AND RESULTS 
 
3.1. Dataset and pre-processing 
 
The CAMLP-Net was evaluated on the newly built MI-2 
dataset, which consists of 25 right-handed healthy subjects 
[16]. In this dataset, there are three different tasks of imaging 
different joint movements of the same limb (imagining grasp 
movement, imagining right elbow movement, and keeping 
resting state with eyes open). The EEG signals of these tasks 
are recoded using the 64-channel gel electrode cap of the 
standard 10/20 system, and the validity period of each record 
is 4s. In this study, we adopt the pre-processed dataset. These 
pre-processing include a band-pass filter and a 50 Hz notch 
filter. In addition, taking account of the computational cost, 
these data are also down-sampled to 200 Hz, thus the number 
of sample points of the original EEG signal is 800 of each 
channel. 

Based on the data usage advice provided by the reference 
[17], the sliding window approach was applied to segment the 
data of 7 sessions for each subject (5 sessions of which 
contains 20 trials for every movement imagination and 2 
sessions each include 50 trials of resting state). The size of 
the sliding window adopted in this experiment was 150 points 
(0.75s), and there was an overlap of 10 points in adjacent 
fragments. After that, we utilized the z-score standardization 



to relieve the fluctuation and non-stationarity. After the above 
processing, the shape of each slice was C T×


, where C equals 

62 representing the number of electrodes (except HEO, VEO), 
and T indicates the number of sample points. 
 
3.2. Experimental setting 
 
To evaluate the performance of the proposed CAMLP-Net, 
we compared it with the following approaches: 
1) EEGNet [18]: It is a classical compact fully 

convolutional network with depth-wise and separable 
convolutions for EEG classification using CNN. 

2) TSCeption [19]: A network applies two types of 
convolutional learners to obtain representation in both 
time and channel dimensions by its multi-scale 
convolutional neural network. 

3) DeepConvNet [20]: The DeepConvNet employs four 
convolution-pooling blocks that give it a strong ability to 
extract features from raw EEG signals. 

4) Corr+CNN [17]: This network calculates the correlation 
matrixes composed of correlation coefficients among all 
electrodes, and then uses two convolution layers to learn 
the overall representation of different channels. It is by 
far the most advanced model on the MI-2 dataset. 
Besides, to verify the effectiveness of the channel 

attention mechanism, an ablation study was also performed 
to compare the CAMLP-Net and the MLP-Mixer combined 
with the local encoder. 

The 5-fold cross-validation of category balance was 
applied to all algorithms in our experiment. We ensured that 
all slices of same trails were divided into either training sets 
or validation sets when applying the sliding window approach. 
For fair comparison, these algorithms were performed on the 
same sliding window approach, and the category of each trail 
sample was also obtained by ensemble strategy. 

In our implementations, the SGD algorithm with 
momentum of 0.9 was applied to optimize cross-entropy loss 
function. The learning rate was set to 0.001, and the batch-
size was 64. Besides, in the local encoder, there were 3 
convolution layers, the kernel size and pooling size k were 
both set to 3, and the number of the filter n was 4. In the 
CAMLP-Mixer module, there were 4 CAMLP blocks, the 
channel extended dimension D was set to 256, while the 
hidden dimension H in the time domain equaled 128.  
 
3.3. Experimental results 
 
Table 1 summarizes the experimental results of different 
algorithms. It can be found that MLP-Mixer and CAMLP-Net 
outperform all the compared algorithms, which indicates that 
it is effective to apply MLP-based architecture to EEG 
classification. The CAMLP-Net achieves the best mean 
accuracy of 77.44 ± 0.57% and the F1 score of 77.40 ± 0.58%, 
which gets the improvement by at least 2.41% on the 
classification accuracy over other compared algorithms.  

Moreover, it is worth mentioning that CAMLP-Net 
improves by 0.93% and 0.91% on the accuracy and F1 score 
compared with MLP-Mixer, because the CAMLP-Net 
applied the channel attention mechanism to obtain more 
useful spatial information. Therefore, it can be concluded that 
the CAMLP-Net can effectively classify MI tasks through 
global information communication and channel attention 
mechanism. 

 
Table 1. 

Comparison with representative methods on MI-2 dataset.  

Methods Accuracy (%) F1 score (%) 

EEGNet 70.44 ± 1.18 69.90 ± 1.41 

TSception 71.97 ± 0.82 71.88 ± 0.88 

DeepConvNet 73.07 ± 1.44 73.06 ± 1.27 

Corr+CNN 75.03 ± 3.37 N/A 

MLP-Mixer  76.51 ± 0.77 76.49 ± 0.77 

CAMLP-Net 77.44 ± 0.57 77.40 ± 0.58 

 
We also studied the parameter sensitivity of the CAMLP 

blocks. Fig.3. shows the performance under different 
CAMLP blocks, which indicates that our algorithm is 
generally stable. In addition, our algorithm performs best 
when the number of blocks is 4, and even the model with the 
least blocks performs better than other compared algorithms. 

 

 
Fig.3. The performance of different CAMLP blocks. 

 
4. CONCLUSION 

 
In this paper, we propose a channel attention based MLP-
Mixer network (CAMLP-Net) for MI decoding, in which the 
newly developed MLP-based architecture is applied to the 
EEG-based classification tasks. Besides, we develop a 
channel attention based MLP-Mixer for global information 
communication and channel features selection of EEG. The 
experimental results indicate the effectiveness of our 
proposed methods.  

In the future, we will further explore the application of 
novel methods in computer vision to the field of EEG 
classification domain. 
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