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ABSTRACT

The growing adoption of point clouds as an imaging
modality has stimulated the search for efficient solutions for
compression. Learning-based algorithms have been reporting
increasingly better performance and are drawing the atten-
tion from the research community and standardisation groups
such as JPEG and MPEG. Learned autoencoder architectures
based on 3D convolutional layers are popular solutions and
have demonstrated higher performance when adopting latent
space entropy modeling based on learned hyperpriors. We
propose an enhanced entropy model that takes into account
both the hyperprior and previously encoded latent features
to estimate the mean and scale of compressed features. The
obtained results show a large increase in performance, with
a BD PSNR gain of 5.75dB when compared to the Octree
coding module in G-PCC for the D2 PSNR metric. We also
perform an ablation study to quantify the impact of network
parameters in the performance of the model, drawing useful
insights for future research.

Index Terms— Point cloud, compression, deep learning,
entropy modeling

1. INTRODUCTION

The interest on point clouds has been growing in the last
years, mainly thanks to the affordability of recent LiDAR
scans, the popularization of devices adapted to the visual-
ization of immersive content such as head mounted displays
(HMD) and increasingly widespread use cases such as au-
tonomous driving and wide area scanning. Due to the high
amount of data associated to this type of content, efficient
compression is paramount. Some compression algorithms use
the octree to represent the points fitted to a regular grid [1],
indicating the occupancy of each voxel by one bit in a tree
structure. Other methods project the point cloud into multi-
ple views and compress the obtained two dimensional maps
as still images or video sequences [2].

The Moving Pictures Experts Group (MPEG) has been
conducting an activity to produce two coding standards,
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namely G-PCC [3] and V-PCC [4], which are based on the
aforementioned technologies, respectively. However, re-
cently proposed solutions leveraging deep learning for point
cloud compression have been drawing attention of both Joint
Photographic Experts Group (JPEG) and MPEG due to their
achieved performance and potential for improvement. This
paradigm shift follows a trend previously initiated for the
compression of two-dimensional images. Several proposed
methods are based on the autoencoder architecture [S5], which
make an input image with three color channels go through
an encoder with learned convolutional layers that produces
a compressed representation with reduced height and width
and an arbitrary number of channels to represent the latent
features. The compressed features are then quantized and
entropy coded in order to minimize the bitrate. This model
has been later improved with a hyperprior [6] modeling the
statistical dependencies on the latent space and an enhanced
entropy model that conditions the probability of encoded
features to previously compressed channels [7].

While 3D convolutional autoencoders and hyperpriors
have already been incorporated to point cloud compression
methods, little effort has been devoted to study the effect of
channel-wise entropy modeling for point clouds. This paper
aims to fill this gap by implementing an algorithm that slices
channel-wise the latent space blocks in the bottleneck and en-
tropy codes each slice sequentially while modeling their mean
and scale parameters based on previously encoded channels.
We obtain superior results when compared to G-PCC as well
as to a state-of-the-art learning based compression method.
Further ablation studies demonstrate the effectiveness of the
channel-conditioning approach. The source code of the com-
pression method is made publicly available to foster future
research !.

2. RELATED WORK

Numerous solutions for point cloud compression have been
proposed in the literature. They are usually based on the rep-
resentation of geometry in other data structures than a list of
coordinates. Octrees have been widely employed for this pur-

Thttps://github.com/mmspg/pcc-geo-slicing
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Fig. 1: Overview of the proposed architecture of the model for N = 2 slices. 3D Convolutional layers are specified by their

kernel size and number of filters. Unless specified
the activation function is ReLU. 21 and 2]” indi

differently, no downsampling nor upsampling is applied, bias is used and
cate an upsampling or downsampling stride of 2 respectively. Red blocks

indicate regular 3D convolutional layers, while blue ones indicate transposed 3D convolutional layers. Q and RC indicate the
quantization operation and entropy coding respectively. K represents the number of channels of y before slicing, and N the

total number of slices. K must be divisible by V.

pose [1], representing the points by recursively partitioning
the three dimensional space and encoding occupancy as nodes
in a tree. Enhancement layers have been associated with this
method by representing the geometry on the leaf nodes as pla-
nar [8] or triangular [9] primitives. The octree structure has
also been leveraged by the recent compression standard G-
PCC (Geometry-based Point Cloud Compression) [3] devel-
oped by MPEG, which also includes three alternative modules
for color coding. Following another direction, [2] projected
the point cloud into multiple views and encoded the obtained
projections with a video codec. This approach is able to en-
code dynamic point clouds and achieves good results at low

Although many approaches [11, 13, 14, 15, 16, 17] model
the entropy on the latent space based only on hyperpriors,
we explore redundancies on the latent space by partitioning
channel-wise the learned feature block into slices and sequen-
tially leveraging previously encoded slices to help model the

scale and mean of the remaining features.

3. PROPOSED METHOD

3.1. Model architecture

bitrates, serving as the basis of the parallel MPEG st

ation effort denominated as V-PCC (Video Point Cloud Com-

pression) [4].

Compression algorithms using learning-based autoen-
coder architectures have also demonstrated interesting per-

formance. While some operate directly on point co
[10], others employ voxelization as pre-processing,

ing occupancy maps that serve as input to 3D convolutional
layers. The work from [11] optimized the performance of an

earlier algorithm [12] by adding adaptive threshol

adjusting hyperparameters in the loss function according to
point density. [13] employed an architecture with residual

blocks, which was further developed by the authors
tiscale approach [14] adopting sparse convolutions.

solutions were proposed for resolution [15] and quality [16]
progressive coding in fully end-to-end optimized networks,

while [17] adopted a hybrid approach by combining
residual coding module with G-PCC.

The proposed model consists in a 3D autoencoder architecture
with latent entropy modeling. A block diagram of the archi-
tecture can be observed in Figure 1. The input « of the model
is a cubic block with k£ x k£ x k voxels that take the value of
1 when occupied and 0 otherwise. The latent representation
y is obtained as an output of the encoder, which then under-
goes a hyper-analysis transform yielding z. This hyperprior
is passed to the bitstream as side information after quantiza-
tion, and is used to model the entropy of the quantized latent
features ¢ after going through the hyper-synthesis.

While in other solutions for learning-based point cloud
compression the hyperprior would be the only variable used
to estimate the scale and mean of ¢, we adapt the solution
from [7] and additionally use previously decoded channels
for entropy modeling. The latent tensor y is sliced along the
channel dimension of size K into N non-overlapping, equally
sized tensors y; with ¢ € {1, ..., N}. The entropy parameters
o; and u; of each quantized slice ¢; are estimated using a
learned transform taking as input the global entropy param-
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Fig. 2: Comparison of our method against V-PCC, G-PCC
(Octree, TriSoup) and other methods based on learned PCC.

eters o and p generated by the hyper-synthesis, as well as
the previously decoded slices g; Vj € {1,...,i — 1}. Note
that gj; is generated from ; after latent residual prediction, as
explained in the next paragraph. Each slice is then indepen-
dently entropy coded using its own entropy parameters.

At decoder side, we also employ latent residual prediction
(LRP) in order to predict the quantization error y; —¢; through
a learned transform taking as input the global entropy param-
eters o and p as well as ¢; and previously decoded slices
g; V5 € {1,...,i — 1}. A tanh non-linearity scaled by a
factor 0.5 is applied to the output of the transform to keep
the output of the LRP within the range of quantization error.
The predicted residuals are then added to ¢;, generating ;.
These slices are then concatenated along the channel dimen-
sion before going through the synthesis transform. This last
learned block finally generates the output block Z containing
a probability estimation for the occupancy of each voxel.

While the quantization of the latent features y and the hy-
perprior z at the encoder stage is a necessary step before en-
tropy coding, this operation cannot be performed during back-
propagation since its gradient is zero almost everywhere. Tra-
ditionally [11, 16, 13], quantization by rounding is replaced
by the addition of uniform noise as a proxy function during
training to make the operation differentiable. Alternative ap-
proaches apply rounding and replace the true gradient by the
identity function. We adopt a mixed method [7] which uses
the noisy tensor while learning the entropy model and re-
places it by a rounded version in subsequent operations. This
technique is only used in training, and the rounding function
is always applied during inference.

To train the model, a rate-distortion optimization problem
represented by the loss function expressed as L = R+ AD is
resolved, where R is the estimated rate and D the distortion.
The trade-off parameter A is used to balance the importance
of compression rate against reconstruction quality. We lever-
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Fig. 3: Rate-distortion plots for ablation study of K and V.

age the focal loss [18] to compute the distortion, which is
expressed by (1).

—Oé(l — jj)’y log(ij), lfJZJ =1

1
~(1—a)7]log(1 — &), ifz;=0 )

FL(z;,%;) = {

In this equation, x; is the binary value of the 4" voxel
of the input tensor and Z; is its estimated occupancy proba-
bility after decoding, while @ and ~y are configurable hyper-
parameters.

As a step outside of the training loop, the probability map
in 7 is translated into point cloud blocks. This step is usually
accomplished by applying a threshold ¢ and rounding every
value above ¢t to 1, and O otherwise. While a naive threshold-
ing would set ¢ = 0.5 for every block, we adopt an adaptive
approach and search for the optimal value ¢ € [0, 1] which
minimises the point-to-point MSE metric [19] between the
reconstructed and the original block, finding its own ¢ for
each block. This technique was introduced by [11] and has
proven to enhance reconstruction quality without significantly
impacting the bitrate.

3.2. Dataset and training configuration

For training and testing purposes, the dataset assembled in
[20] is used. It consists of 50 point clouds sampled from pre-
existing datasets, voxelized with a bit depth of 10 for most
models, and bit depth of 9 for point clouds with lower point
density. The dataset is separated into 44 point clouds for train-
ing and 6 for testing following the split originally proposed
by the authors. The point clouds are partitioned into blocks
of size 64 x 64 x 64 for training, and 128 x 128 x 128 for
testing, yielding a total of 13084 and 383 blocks respectively.
Furthermore, blocks with less than 500 points in the training
set were discarded since they do not carry enough relevant
information.



Compression ‘ Metric ‘ bumbameuboi9 ‘ guanyinl0 ‘ longdress10 ‘ phil9 ‘ rhetoricianl0 ‘ romanoillamp 10 ‘ Average
D1 PSNR 620 9.23 10.58 731 9.53 5.37 5.97
G-PCC Octree ‘ D2 PSNR ‘ -1.51 ‘ 7.53 ‘ 9.15 ‘ 4.43 ‘ 8.13 ‘ 6.77 ‘ 5.75
Ouach etal, (1] | D PSNR -0.97 3.09 3.60 1.77 3.20 1.74 2.07
vach et al D2 PSNR 2.61 3.15 3.65 1.06 2.82 2.34 261

Table 1: BD PSNR gain in dB between our method and other compression algorithms.

The training process is conducted using the Adam opti-
mizer with a learning rate of 5 - 1075, We employed sequen-
tial training to obtain different rate points, which has shown
to save time without negative impact on the performance [11].

4. RESULTS

The proposed model was trained with several configurations.
We adopted K = 320 as in the original work from [7] and
the additional value of K = 160 for the latent depth. Both
N = 5and N = 10 were selected for the number of slices, as
well as N = 1 in order to study a condition without channel-
wise entropy modeling. In the focal loss, we employed v =
2, and extensive experimentation allowed to define = 0.6
as the best performing value. Different rate-distortion trade-
offs were obtained with A = 40,200, 1000 and 1750. All
models were tested with both adaptive and fixed thresholding,
the latter case with ¢ = 0.5. Architectures both with and
without the LRP were also trained and assessed.

For evaluation, all blocks from the testing set were com-
pressed, decompressed and merged together to reconstruct the
point cloud. The D1 PSNR (point-to-point) and D2 PSNR
(point-to-plane) metrics were computed on the reconstructed
point clouds using the MPEG software version 0.13.5 [19].

The comparison of the rate-distortion curves revealed that
the best performing configuration adopted K = 160, N =
10, adaptive thresholding and the LRP. Additional models
were trained with A = 400 and 700 for the selected config-
uration. For performance comparison, the test set was also
compressed with V-PCC intra, both geometry coding mod-
ules of G-PCC, namely TriSoup and Octree, as well as three
distinct learning-based methods proposed in [11, 14, 17]. The
plots of the D2 PSNR metric against the bitrate for two mod-
els of the test set are presented in Figure 2. The Bjontergaard-
Delta (BD) PSNR comparison to both Octree and the method
from [11] was computed for the D1 and D2 metrics and is
reported in Table 1 for each test set model.

The proposed method overcomes both G-PCC and [11]
in terms of quality in the evaluated test set, as indicated by
the average BD PSNR gain and the rate distortion plots. This
trend is specially observed for point clouds voxelized with
higher bit depth, i.e. the entire set except bumbameuboi and
phil. The comparison to V-PCC and to [14] poses a greater
challenge due to the lower bitrate range achieved by those

solution, but the plots from Figure 2 indicate that our solution
can achieve comparable or superior results at similar bitrates.

In order to observe the impact that different factors exert
in the performance of the model, we include in Figure 3 an
ablation study for K and N. The baseline corresponds to the
plots presented in Figure 2 for our model, while the remaining
were tested with the exact same configurations except for the
parameters indicated in the legend.

The ablation study demonstrates that the slice partitions
play an important role for the obtained performance, since
the model with N = 1 achieves consistently lower metric
values at equivalent bitrates. However, the performance in-
crease from N = 10 when compared to N = 5 is only
marginal, indicating that the latter amount of partitions is al-
ready able to minimize inter-channel redundancies. The re-
sult for K = 320 also suggests that employing an excessively
high amount of channels can be detrimental for the perfor-
mance of the model, and fine tuning the latent depth for the
specific case of point cloud compression is necessary.

Among other techniques, while we observed adaptive
thresholding played a crucial role on the obtained perfor-
mance, the changes provoked by the removal of the LRP
were minimal, suggesting that equivalent transformations are
already effectively learned by the synthesis block. Therefore,
an optimal implementation of this method would not include
the LRP block, due to the associated complexity increase.

5. CONCLUSION

This paper introduces sequential channel-wise entropy con-
ditioning for learning-based point cloud compression. The
method also adopts adpative thresholding and mixed training
quantization methods in an end-to-end optimized architec-
ture, outperforming both conventional approaches and other
learning-based compression methods with BD PSNR gains of
5.75 and 2.61dB when compared to G-PCC Octree and [11],
respectively. The ablation study also provides insights on
the impact of latent space partitioning for point cloud cod-
ing. The performance gain from this approach indicates that
the latent features generated by current learning-based com-
pression methods carry redundancy that can be explored by
the proposed architecture. Future studies can focus on other
techniques to decorrelate channels in the learning process and
naturally reduce channel-wise redundancy.
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