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ABSTRACT

We propose a new approach for the image super-resolution
(SR) task that progressively restores a high-resolution (HR)
image from an input low-resolution (LR) image on the basis
of a neural ordinary differential equation. In particular, we
newly formulate the SR problem as an initial value problem,
where the initial value is the input LR image. Unlike conven-
tional progressive SR methods that perform gradual updates
using straightforward iterative mechanisms, our SR process is
formulated in a concrete manner based on explicit modeling
with a much clearer understanding. Our method can be eas-
ily implemented using conventional neural networks for im-
age restoration. Moreover, the proposed method can super-
resolve an image with arbitrary scale factors on continuous
domain, and achieves superior SR performance over state-of-
the-art SR methods.

1. INTRODUCTION

Image super-resolution (SR) is a classic low-level vision task
that aims to recover a high-resolution (HR) image from a
given low-resolution (LR) input image. For several decades, a
large volume of literature documents the high demand of SR
technique in various vision applications. However, SR prob-
lem still remains a challenge and is difficult to solve because
it is a highly ill-posed inverse problem.

With the recent development of deep learning technol-
ogy, numerous deep-learning-based SR methods [1, 2, 3] have
been presented, and they have shown plausible results. To
further improve the SR performance, many researchers have
attempted to restore the high-quality image by recovering the
fine details of the LR input image progressively [4, 5]. Many
previous works hinged on this progressive SR procedure are
based on a variant of feedback network in the human visual
system [6], and they show satisfactory SR results. However,
owing to lack of theoretical clarity on the progressive system,
these approaches need to develop a well-engineered method.
For example, the number of iterations for the gradual refine-
ments [7] and complicated learning strategies [5] as well as
the network architectures [4, 8] are considered to improve the
SR performance. Several researchers have conducted stud-
ies on differential equations to solve the image restoration

problems [9, 10]. They also have developed progressive ap-
proaches, but these approaches are limited to modeling the
prior and/or likelihood models.

In this study, we introduce a neural ordinary differential
equation (NODE [11]). formulation that describes an explic-
itly defined progressive SR procedure from the LR to HR im-
ages via a neural network. In particular, we reconstruct the
HR image by numerically solving the initial value problem
originated from the proposed ODE formulation, given the LR
image as an initial condition. With the aid of the proposed
ODE, our method eases implementation using conventional
restoration networks and ODE solvers without any exertion to
improve the performance. Furthermore, by simply changing
the initial condition of our formulation at the test-time, ours
can naturally handle a continuous-valued scale factor. Exten-
sive experiments demonstrate the superiority of the proposed
method over state-of-the-art SR approaches.

2. PROPOSED METHOD

2.1. Progressive Super-Resolution Formulation

Existing SR methods utilizing progressive SR process [12, 4,
5] are based on iterative multi-stage approaches and can be
viewed as variants of the following:

In = gnfl(lnfl)

where n denotes the iteration step, Iy denotes the given ini-
tial input LR image, and I, is the iteratively refined image
from its previous state I,_;. These approaches typically
produce multiple intermediate HR images during the refine-
ment, and the rendered image at the last N-th iteration [7, 5]
or a combined version of the multiple intermediate images
({In}1<n<n) [13, 4] becomes the final SR result. Although
these previous progressive methods show promising SR re-
sults, they still have some limitations. First, these methods
need plenty of time and effort in determining the network
configurations including the number of progressive updates
N and hyper-parameter settings, and designing cost functions
to train the SR networks g. In addition, well-engineered and
dedicated learning strategy, such as curriculum learning [5]
and recursive supervision [13], is required for each method.
This complication comes from the lack of clear understanding

(n < N), (1
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Fig. 1: (a) Overview of the proposed SR approach (NODE-SR). {¢; }o<i<m is a strictly decreasing sequence and ¢,, = 1. Solid orange line
represents our SR process that starts with the initial condition Z(to) until we reconstruct the final HR image Z(1). (b) The neural network f
takes an input image Z(t) with the scale factor ¢ and outputs the desired high-frequency detail.

on their intermediate image states {I,,}. To alleviate these
problems, we formulate the progressive SR process with a
differential equation. This allows us to implement and train
the SR networks in an established way while outperforming
the performance of conventional progressive SR process.
Assume that (Iggr) J: is a downscaled version of a
ground-truth clean image Iz r using a traditional SR kernel
(e.g., bicubic) with a scaling factor % We then define Z(t) by
upscaling (Igg) |+ using that SR kernel with a scaling factor
t so that Iy r and Z(t) have the same spatial resolution (see
the illustration of “Generating LR image” in Figure 1(a)).
Note that ¢ > 1, and Z(1) denotes the ground-truth clean
image Iygr. To model a progressive SR process,we first
estimate the high-frequency image residual with a neural net-
work. Specifically, when ¢ is a conventional discrete-scaling
factor (e.g., x2, x3, and x4), image residual between Z(¢) and
Z(t — 1) can be modeled using a neural network fgiscrete as:

I(t - 1) - I(t) = fdiscrete(I(t), t) (2)

Notably, Z(t — 1) includes more high-frequency details than
Z(t) without loss of generality. In our method, we model the
slightest image difference to formulate a continuously pro-
gressive SR process. Therefore, we take the scale factor ¢ to
continuous domain, and reformulate (2) as an ODE with a
neural network f as:

O _ .10, ®
where 6 denotes the trainable parameter of the network f.
Using this formulation, we can predict the high-frequency im-
age detail required to slightly enhance Z(t) with the network
f. (Note that we can obtain Z(t) with any rational number
t by adding padding to the border of image before resizing
and then center cropping the image.) As existing SR neu-
ral networks have been proven to be successful at predicting

the high-frequency residual image [2], we can use conven-
tional SR architectures as our network f in (3) without major
changes.

2.2. Single Image Super-Resolution with Neural Ordi-
nary Differential Equation

In this section, we explain how to super-resolve a given LR
image with a continuous scaling factor using our ODE-based
SR formulation in (3).

First, we obtain Z(ty) by upscaling the given LR input
image (“Test time LR image” in Figure 1(a)) using the bicubic
SR kernel to a desired output resolution with a scaling factor
to . Next, we solve the ODE initial value problem in (3) with
the initial condition Z(t() by integrating the neural network f
from ¢ to 1 to acquire the high-quality image Z(1) as follows:

Z(1) =Z(to) + 1 F(Z(¢),t,6)dt. 4)

Specifically, we approximate the high-quality image Z(1)
given a fully trained neural network f, network parameter 6,
initial condition Z(¢y), and integral interval [to, 1] using an
ODE solver (ODESolve()) as:

Z(1) = ODESolve(Z(to), f, 0, [to, 1]). 5)

Thus, our method does not need to consider the stop condition
(i.e., the number of feedback iterations) of the progressive
SR process unlike conventional approaches [7, 5]. Notably,
during the training phase, we need to employ an ODE solver
which allows end-to-end training using backpropagation with
other components such as the neural network f. Unlike other
progressive SR methods [13, 5], we do not require any other
learning strategies like curriculum learning during the train-
ing phase.
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Fig. 2: Visual comparisons with conventional progressive SR meth-
ods (DRRN, SRFBN). For different scale factors (x2, and x4) inter-
mediate HR images are visualized, and #it indicates the number of

updates used to render results by DRRN and SRFBN. I() denotes
the predicted results by our NODE-RDN.
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Fig. 3: Visual comparison of NODE-RDN (ours) with Meta-RDN
on scale x2.5 and x4.

In addition, our formulation is made upon a continuous con-
text, allows a continuous scale factor ¢y where tg > 1. This
makes our method able to handle the arbitrary-scale SR prob-
lem. To train the deep neural network f, and learn the param-
eter 6 in (5), we minimize the loss summed over scale factors
t using the L1 loss function as:

L(0) = [{zr — ODESolve(Z(t), f,6,[t,1])[1. (6)

By minimizing the proposed loss function, our network pa-
rameter 6 is trained to estimate the image detail to be added
into the network input as in (3).

3. EXPERIMENTAL RESULTS

In this section, we carry out extensive experiments to demon-
strate the superiority of the proposed method, and add various
quantitative and qualitative comparison results. We also pro-
vide detailed analysis of our experimental results.

3.1. Implementation details

We use VDSR [2] and RDN [3] as backbone CNN architec-
tures for our network f with slight modifications. For each
CNN architecture, we change the first layer to feed the scale
factor ¢ as an additional input. To be specific, we extend
the input channel from 3 to 4, and the pixel locations of the
newly concatenated channel (4-th channel) are filled with a
scalar value ¢ as shown in Figure 1(b). In addition, for RDN,
we remove the last upsampling layer so that input and out-
put resolutions are the same in our work. Note that, no extra
parameters are added except for the first layers of the net-
works. To train and infer the proposed SR process, we use
Runge—Kutta (RK4) method as our ODE solver in (6). For
simplicity, our approaches with VDSR and RDN backbones
are called NODE-VDSR and NODE-RDN in the remaining
parts of the experiments, respectively. We use the DIV2K [14]
dataset to train our NODE-VDSR and NODE-RDN. We train
the network by minimizing the L1 loss in (6) with the Adam
optimizer (31 = 0.9, 32 = 0.999, ¢ = 10~8) [15]. The ini-
tial learning rate is set as 10~—*, which is then decreased by
half every 100k gradient update steps, and trained for 600k
iterations in total. The mini-batch size of NODE-VDSR is 16
(200x200 patches), but our NODE-RDN takes 8 patches as
a mini-batch (130x130 patches) owing to the memory limit
of our graphic units. Similar to the training settings in Meta-
SR [16], we train the network f by randomly changing the
scale factor ¢ in (6) from 1 to 4 with a stride of 0.1 (i.e.,
te{1.1,1.2,1.3,...,4}).

3.2. Comparison with Progressive SR Methods

First, we compare our NODE-RDN with several state-of-
the-art progressive SR methods: DRCN [13], LapSRN [12],
DRRN [7], PRLSR [8], and SRFBN [5]. As in [20], self-
ensemble method is used to further improve NODE-RDN
(denoted as NODE-RDN+). Note that, our NODE-RDN and
NODE-RDN+ can handle multiple scale factors ¢ including
non-integer scale factors (e.g., x1.5) using the same network
parameter. In contrast, other approaches are required to be
trained for certain discrete integer scale factors (x2, x3, and
x4) separately, resulting in a distinct parameter set for each
scale factor. Nevertheless, quantitative restoration results
in Table 1 show that our NODE-RDN, NODE-RDN+ con-
sistently outperforms conventional progressive SR methods
for the discrete integer scaling factors (x2, x3, and x4) in
terms of PSNR. In Figure 2, we investigate intermediate im-
ages produced during the progressive SR process with the
scale factors x2 and x4. Final results by DRRN are ob-
tained after 25 iterations, and the final results by SRFBN
are obtained with 4 iterations as in their original settings.
We provide 4 intermediate HR images during the updates
for visual comparisons. For our NODE-RDN, intermediate
image states are represented as f(t,») where 1 < t; <ty and
I(t;) = ODESolve(Z(ty), f,0, [to,t:]). We observe that
DRRN and SRFBN fail to progressively refine patches with
high-frequency details, while our NODE-RDN can gradually



Dataset Scale Bicubic DRCN LapSRN DRRN PRLSR SRFBN NODE-RDN (ours) | NODE-RDN+ (ours)
x2 30.24/0.8688 | 33.04/0.9118 | 33.08/0.913 | 33.23/0.9136 | 33.69/0.9191 | 33.82/0.9196 33.90/0.9209 33.95/0.9214
Setl4 X3 27.55/0.7742 | 29.76/0.8311 | 29.87/0.833 | 29.96/0.8349 | 30.43/0.8436 | 30.51/0.8461 30.53/0.8465 30.59/0.8473
x4 26.00/0.7027 | 28.02/0.7670 | 28.19/0.772 | 28.21/0.7721 | 28.71/0.7838 | 28.81/0.7868 28.76/0.7866 28.83/0.7877
x2 29.56/0.8431 | 31.85/0.8942 | 31.80/0.895 | 32.05/0.8973 | 32.25/0.9005 | 32.29/0.9010 32.34/0.9025 32.38/0.9028
B100 x3 27.21/0.7385 | 28.80/0.7963 | 28.81/0.797 | 28.95/0.8004 | 29.14/0.8060 | 29.24/0.8084 29.25/0.8094 29.28/0.8100
x4 25.96/0.6675 | 27.23/0.7233 | 27.32/0.728 | 27.38/0.7284 | 27.64/0.7378 | 27.72/0.7409 27.72/0.7410 27.75/0.7417
x2 26.88/0.8403 | 30.75/0.9133 | 30.41/0.910 | 31.23/0.9188 | 32.35/0.9308 | 32.62/0.9328 32.81/0.9345 32.97/0.9355
Urban100 X3 24.46/0.7349 | 27.15/0.8276 | 27.06/0.827 | 27.53/0.8378 | 28.27/0.8541 | 28.73/0.8641 28.81/0.8644 28.94/0.8662
x4 23.14/0.6577 | 25.14/0.7510 | 25.21/0.756 | 25.44/0.7638 | 26.22/0.7892 | 26.60/0.8015 26.56/0.7985 26.68/0.8010

Table 1: Comparison with progressive SR methods on the benchmark datsets (Set14 [17], B100 [18], and Urban100 [19]). We provide
average PSNR/SSIM values for scaling factors x2, x3, and x4. Our NODE-RDN and NODE-RDN+ show the best performance. Red and blue

colors denote the best and second best results, respectively.

Seale | 1| x12 | x13 | x14 | x15 | x16 | x17 | x18 | x19 | x20 | x21 | x22 | x23 | x24 | x25
Methods
bicubic 36.56 | 35.01 | 33.84 | 32.93 | 32.14 | 31.49 | 30.90 | 30.38 | 29.97 | 29.55 | 29.18 | 28.87 | 28.57 | 28.31 | 28.13
VDSR - - - - - - - - 3190 | - - - - :
VDSR4t 39.51 | 38.44 | 37.15 | 36.04 | 34.98 | 34.15 | 33.39 | 32.78 | 32.22 | 31.70 | 31.27 | 30.86 | 30.53 | 302 | 29.91
NODE-VDSR (ours) | 41.46 | 39.36 | 37.75 | 36.51 | 3538 | 34.49 | 33.70 | 33.07 | 32.50 | 31.95 | 31.52 | 31.09 | 30.76 | 30.42 | 30.12
RDN - N - : N - - - T 3234 | - N - - -
RDN+t 42.83 | 39.92 | 38.18 | 36.87 | 35.71 | 34.80 | 33.99 | 33.34 | 32.77 | 32.22 | 31.76 | 31.33 | 30.99 | 30.64 | 30.34
Meta-RDN 42.82 | 40.04 | 38.28 | 36.95 | 35.86 | 34.90 | 34.13 | 33.45 | 32.86 | 32.35 | 31.82 | 31.41 | 31.06 | 30.62 | 30.45
NODE-RDN (ours) | 43.22 | 40.06 | 3835 | 37.02 | 35.86 | 34.95 | 34.14 | 33.47 | 32.89 | 32.34 | 31.89 | 31.46 | 31.12 | 30.76 | 30.46
NODE-RDN+ (ours) | 43.33 | 40.13 | 38.40 | 37.07 | 35.90 | 34.99 | 34.17 | 33.50 | 32.93 | 32.38 | 31.93 | 31.50 | 31.16 | 30.80 | 30.50

Seale | o6 | x27 | x28 | x29 | x30 | x3.1 | x32 | x33 | x34 | x35 | 36 | x37 | 38 | x39 | x40
Methods
bicubic 2789 | 27.66 | 27.51 | 2731 | 27.19 | 26.98 | 26.89 | 26.59 | 26.60 | 26.42 | 26.35 | 26.15 | 26.07 | 26.01 | 25.96
VDSR - - - 2883 | - - - - - - - - 12729
VDSR+t 2964 | 2939 | 29.15 | 28.93 | 28.74 | 28.55 | 28.38 | 28.22 | 28.05 | 27.89 | 27.76 | 27.58 | 27.47 | 2734 | 27.20
NODE-VDSR (ours) | 29.85 | 29.61 | 29.36 | 29.14 | 28.94 | 28.75 | 28.58 | 28.41 | 28.25 | 28.08 | 27.96 | 27.79 | 27.66 | 27.54 | 27.40
RDN : : - 2926 | - : - : - - : - o212
RDN+t 30.06 | 29.80 | 29.55 | 29.33 | 29.12 | 28.92 | 28.76 | 28.59 | 28.43 | 2826 | 28.13 | 27.95 | 27.84 | 27.71 | 27.58
Meta-RDN 30.13 | 29.82 | 29.67 | 29.40 | 29.30 | 28.87 | 28.79 | 28.68 | 28.54 | 28.32 | 28.27 | 28.04 | 27.92 | 27.82 | 27.75
NODE-RDN (ours) | 30.18 | 29.93 | 29.67 | 29.45 | 29.25 | 29.05 | 28.88 | 28.71 | 28.54 | 28.37 | 28.24 | 28.07 | 27.96 | 27.81 | 27.72
NODE-RDN+ (ours) | 30.22 | 29.97 | 29.71 | 29.49 | 2028 | 29.05 | 28.92 | 28.74 | 28.58 | 28.41 | 28.28 | 28.12 | 28.00 | 27.87 | 27.75

Table 2: Average PSNR values on the B100 [18] evaluated with different scale factors. The best performance is shown in bold number.

improve the intermediate images and render promising results
at the final states.

3.3. Comparison with Multi-scale SR Methods

Our approach can handle a continuous scale factor for the
SR task, thus we compare ours with existing multi-scale SR
methods that can handle continuous scale factors: VDSR [2]
and Meta-SR [16]. Notably, Meta-SR implemented using
RDN (i.e., Meta-RDN) is the current state-of-the-art SR ap-
proach. In Table 2, we show quantitative results compared to
existing SR methods (VDSR, RDN, and Meta-RDN). Note
that, VDSR+t and RDN+t are modified versions of VDSR
and RDN to take the scale factor ¢ as an additional input
of the networks and have the same input and output reso-
lutions as in our network f. We also compare our method
with these new baselines (VDSR+t and RDN+t) for fair com-
parisons. We evaluate the SR performance on the B100
benchmark dataset by increasing the scaling factor from 1.1
to 4. Interestingly, we observe that NODE-VDSR outper-
forms VDSR and VDSR+t at every scale by a large margin
although VDSR and VDSR+t have similar network archi-

tecture to our NODE-VDSR. Similarly, NODE-RDN shows
better performance than Meta-RDN and RDN+t. We also
provide qualitative comparison results with Meta-SR in Fig-
ure 3, and we see that our NODE-RDN recovers much clearer
edges than Meta-RDN.

4. CONCLUSION

In this work, we proposed a novel differential equation for the
SR task to progressively enhance a given input LR image, and
allow continuous-valued scale factor. Image difference be-
tween images over different scale factors is physically mod-
eled with a neural network, and formulated as a NODE. To
restore a high-quality image, we solve the ODE initial value
problem with the initial condition given as an input LR im-
age. The main difference with existing progressive SR meth-
ods is that our formulation is based on the physical modeling
of the intermediate images, and adds fine high-frequency de-
tails gradually. Detailed experimental results show that our
method achieves superior performance compared to state-of-
the-art SR approaches.
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