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ABSTRACT

Data fusion—the joint analysis of multiple datasets—through cou-
pled factorizations has the promise to enable enhanced knowledge
discovery, and hence is an active area. Various formulations of
coupled matrix factorizations have been proposed, each with its
own modeling assumptions. In this paper, we study two such meth-
ods, namely Independent Vector Analysis (IVA), i.e., extension
of Independent Component Analysis (ICA) to multiple datasets,
and PARAFAC2, a tensor factorization approach. We demonstrate
the modeling assumptions of IVA and PARAFAC2 using simula-
tions, revealing that both methods can accurately capture the latent
components, albeit with certain differences in capturing the cor-
responding subject scores. By making use of a rich multi-task
functional Magnetic Resonance Imaging (fMRI) dataset, we show
how the two methods can be used for achieving two important goals
at once, namely capturing group differences between patients with
schizophrenia and healthy controls with interpretable components,
as well as understanding the relationship across multiple tasks. This
is achieved through the definition of source component vectors
across datasets.

Index Terms— data fusion, independent vector analysis, tensor
decompositions, PARAFAC2, multi-task fMRI

1. INTRODUCTION

The interest in data fusion, which refers to the joint analysis of mul-
tiple related datasets, has grown in recent years in various research
areas [1, 2, 3] such as biomedicine [4, 5] or wireless sensor net-
works [6], among others. Data fusion approaches allow us to lever-
age the complementary information in multiple datasets [7] by let-
ting them fully interact and inform each other without putting strong
constraints on them [2, 8]. Data-driven methods, especially methods
based on matrix and tensor decompositions, are particularly attrac-
tive for data fusion [2, 7, 8]. IVA [9] is an extension of the well-
known ICA to multiple datasets, and is thus a good candidate for data
fusion by making use of the dependence across datasets [10]. If mul-
tiple datasets are stacked along a third mode to form a higher-order
array (also referred to as a higher-order tensor), one can also take ad-
vantage of the inherent relationship across the datasets using tensor
decompositions [11]. The PARAFAC2 [12] tensor model has proved
useful for jointly analyzing datasets [13, 14, 15] as it does not impose
strong constraints on them, in contrast to the well-known CANDE-
COMP/PARAFAC (CP) [16, 17] tensor decomposition method.

In recent years, fusion of medical imaging data has received
growing attention and has led to the identification of novel biomark-
ers for disorders such as schizophrenia [4, 18]. One of the important

fusion tasks is the use of data collected from the same subjects while
they are performing different tasks, as in the case of multi-task fMRI
data [19]. Previous studies have concentrated on analyzing multiple
datasets jointly to be able to distinguish between two groups, e.g.,
patients with schizophrenia and healthy controls, and made use of a
single image per task, see, e.g., [20]. It is of interest to analyze mul-
tiple feature data per task to also examine the relationship between
different brain networks for these datasets that report on multiple
aspects of a task.

In this paper, we address the relationship between two impor-
tant models, namely IVA-G [21], which is IVA using a multivariate
Gaussian model, and PARAFAC2, for data fusion, and we demon-
strate their modeling assumptions through simulations. We apply
these two models for the analysis of multi-task fMRI data, such that
the importance and relevance of different modeling assumptions as
well as their role for interpretability of the results can be clearly as-
sessed. We see that both methods not only recover components that
discriminate between patients and controls, but also enable discov-
ery of the relationship across different tasks, thus, fully make use of
the complementary information across datasets. Furthermore, to the
best of our knowledge, this is the first application of the PARAFAC2
model to analyze multiple datasets with the goal of understanding
the relationship across datasets in terms of biomarkers. We analyze
13 datasets from the MCIC collection [22], which are collected from
271 subjects that perform three different tasks with well defined re-
lationship among them. The datasets are acquired using different
regressors for the three tasks. As such, these datasets allow us to in-
terpret the outcome of both methods, especially for an analysis that
has a focus on finding their relationship.

2. METHODS

2.1. IVA-G

IVA [9] is an extension of ICA to multiple datasets. It assumes the
Blind Source Separation (BSS) model for K datasets,

X[k] = A[k]S[k], k = 1, . . . ,K, (1)

where X[k] ∈ RI×J is the observed data in the kth dataset, S[k] ∈
RI×J is the source matrix consisting of I source components with
each J samples, and A[k] ∈ RI×I is a mixing matrix. The goal
of IVA is to estimate the source matrices U[k] = W[k]X[k] ∈
RI×J , k = 1, . . . ,K, where W[k] ∈ RI×I is the demixing ma-
trix for the kth dataset.

We define the ith Source Component Vector (SCV) Si, by
concatenating the ith source component (row) of each S[k], as
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Fig. 1: Illustration of IVA (from [23]). The ith row (source com-
ponent) of all S[k] forms the ith SCV Si. Source components are
made maximally dependent within an SCV and maximally indepen-
dent across SCVs in IVA (and maximally uncorrelated in IVA-G).
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∈ RK×J , as shown in Fig-

ure 1. IVA minimizes the mutual information among SCVs, which
also leads to increasing the dependence within an SCV through an
appropriate selected multivariate density model [24]. IVA-G [24]
assumes a multivariate Gaussian distribution for the SCVs, and thus
only takes second-order statistical information into account.

2.2. PARAFAC2

PARAFAC2 [12, 25] is a more flexible version of the commonly
used CP tensor model. An R-component CP model represents a
third-order tensor X ∈ RI×J×K as follows [16, 17]:

X ≈
R∑

r=1

ar ◦ br ◦ cr, (2)

with the factor matrices A = [a1 . . . aR] ∈ RI×R, B =
[b1 . . . bR] ∈ RJ×R, C = [c1 . . . cR] ∈ RK×R, and the outer
product denoted by ◦. We use ar , br , cr as a more compact nota-
tion of a:r , b:r , c:r , the rth column of A, B, C, respectively. With
X[k] ∈ RI×J being the kth frontal slice of X, (2) can be rewritten as

X[k] ≈ Adiag (ck:)B
T , k = 1, . . . ,K, (3)

where ck: is the kth row of C, diag (·) denotes a diagonal matrix
with the corresponding vector on the main diagonal, and (·)T de-
notes the transpose. In (3), we see that the CP model assumes com-
mon factor matrices A and B for all K slices.

In contrast to this, PARAFAC2 allows for changes of the B ma-
trix, meaning that the factor matrix B[k] ∈ RJ×R can be different in
each frontal slice (dataset) as shown in Figure 2:

X[k] ≈ Adiag (ck:)
(
B[k]

)T

s.t.
(
B[k]

)T

B[k] = M, k = 1, . . . ,K,

(4)

where M is an arbitrary matrix, and with the constraint introduced to
preserve uniqueness of the components up to permutation and scal-
ing ambiguities [12, 25]. We use a Frobenius-norm based loss func-
tion when fitting the model [25].

2.3. Comparison of the methods

Equations (1) and (4) show that IVA-G and PARAFAC2 models are
equivalent when A[k] = Adiag(ck:) and S[k] = (B[k])T . How-
ever, each model has different cost functions and hence different as-
sumptions, i.e., PARAFAC2 is more constrained in terms of A[k],
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Fig. 2: Illustration of a PARAFAC2 model. The A[k] are more con-
strained than in IVA-G; however, the B[k] are less constrained by

only fulfilling
(
B[k]

)T

B[k] = M.

while IVA-G is more constrained in terms of S[k]. If M = I, where
I is the identity matrix, the assumptions of the two models become
more similar as both assume uncorrelatedness of the sources. We
can define the rth SCV in PARAFAC2, by concatenating the rth col-
umn of all B[k], as Br = [b

[1]
r b

[2]
r . . . b

[K]
r ]T ∈ RK×J . As

PARAFAC2 has a smaller set of parameters to estimate than IVA-
G, it is likely to be more robust against noise.

3. EXPERIMENTS

Using experiments on both simulated and real data, we demonstrate
that IVA-G and PARAFAC2 can capture the relationship across task
datasets in the SCV covariance matrices as well as find source com-
ponents that discriminate between two groups, in our case patients
with schizophrenia and healthy controls.

3.1. Simulated data

3.1.1. Data generation

We have simulated two scenarios with K = 12 datasets, the first
following (4), and the second following (1) and violating A[k] =
Adiag(ck:). In both scenarios, for the voxels mode, the sources
S[k] = (B[k])T ∈ R4×5000 are generated using a multivariate Gaus-
sian distribution with the covariance matrix for each SCV shown in
Figure 3. For the task/datasets mode, the factor matrix C ∈ R12×4

is also generated equally for both scenarios. The entries of the first
three columns are drawn from N(1.5, 0.01). From the first four
datasets in component 2 and the last eight datasets in component 3,
we subtract 1 to simulate that the component is not present in some
datasets. The last column is drawn from N(1.5, 0.25) to make sure
that the columns of C are not too similar. For the subjects mode, in
scenario 1, the first and third column of A ∈ R300×4 are generated
according to a normal distribution N(0, 1), with 0.5 being added to
the last 150 values of the columns to simulate a difference between
patients and controls. The second and fourth column are also dis-
tributed normally, with mean 0 and standard deviation as the average
of the standard deviations of the first and third component. In sce-
nario 2, A has only a step in the first column, and then all A[k] are
calculated. After that, a step of height 0.5 is added the third column
of A, and the third column of A[k] is recalculated for the first four
datasets. This way, A[k] ̸= Adiag(ck:) for the third component.

3.1.2. Performance evaluation

For PARAFAC2, non-negativity constraints are imposed on the
task/datasets mode to solve the potential sign indeterminacy per
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Fig. 3: Covariance matrices (12× 12) of simulated sources for each
SCV, which are estimated reliably by both models (not shown).
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Fig. 4: Distribution of the true and estimated p-values in A[k].

component [12]. We find the correct permutation of the PARAFAC2
components by maximizing the cosine similarity of the concate-
nated true and estimated B[k] matrices. To test for statistically
significant difference (p < 0.05) between patients and controls (first
and second half of a column in A[k]), a two-sample t-test (unequal
variances) is applied on each column of A[k], and the corresponding
p-values are calculated. The distributions of the true and estimated
p-values are compared in boxplots. Furthermore, we calculate the
average correlation of the true and estimated sources across datasets
for each SCV.

3.1.3. Results of the simulated data analysis

We reduce the dimension of the simulated dataset to 4 via Prin-
cipal Component Analysis (PCA), and we apply IVA-G on the
dimension-reduced dataset with multiple initializations and choose
the most consistent run1 [26]. We run PARAFAC2 (R = 4 com-
ponents) with non-negativity constraints2 for multiple initializations
and choose the run with the smallest reconstruction error. The re-
sults for the simulated data analysis, averaged across 50 independent
Monte-Carlo runs, show that IVA-G and PARAFAC2 both achieve
a high correlation between the true and estimated sources. Thus,
PARAFAC2 is able to estimate B[k] correctly despite the assumption
on A[k] being violated. Figure 4 shows the distributions of the true
and estimated p-values for both scenarios. As A is the same for all
datasets in scenario 1, the p-value for all datasets is also the same,
while in scenario 2, it is different between the first four and last eight

1Python code available at: https://github.com/SSTGroup/
independent_vector_analysis

2Python code available at: https://github.com/tensorly/
tensorly [15, 27]

datasets in component 3. IVA-G is more flexible as it estimates a
different p-value for every dataset, while PARAFAC2 finds the same
p-value for all datasets because it assumes the same mixing matrix.
We see in Figure 4(a) that, for scenario 1, in component 3, IVA-
G overestimates the p-value for some datasets, while PARAFAC2
estimates the p-value small enough matching the ground truth.
However, in scenario 2, IVA-G can capture the different p-values
in component 3 (Figure 4(b)), which PARAFAC2 cannot due to its
model design.

3.2. Real data

3.2.1. Dataset

We analyze 13 fMRI datasets from the MCIC collection [22], which
are collected from 271 subjects (121 patients with schizophrenia and
150 healthy controls) that perform three different tasks: Auditory
Oddball (AOD), Sensory Motor (SM), and Sternberg Item Recogni-
tion Paradigm (SIRP). The lower-dimensional multivariate features
for each subject and task were extracted using regressors that were
created by convolving the hemodynamic response function (HRF) in
SPM [28] with desired predictors, as in [20]. The resulting regres-
sion coefficient maps, i.e., features, for all subjects are then concate-
nated vertically to form the task datasets X[k] ∈ R271×48546, k =
1, . . . 13, where 48546 is the number of voxels.

The AOD task required subjects to listen to three different types
of stimuli, i.e., standard, novel and target, coming in pseudorandom
order, and to press a button whenever the target stimulus occurs.
Regressors were created to model the target (T), the target with the
standard (TS), the novel (N), and the novel with the standard (NS)
stimuli, thus resulting in four task datasets for the AOD task. In
the SM task, subjects had to listen to 16 different audio tones and
to press a button after each tone change. The regressor was created
to model the entire increase and decrease block, thus resulting in
only one task dataset. The SIRP task consists of the encoding and
probe phase. Subjects were asked to memorize a set of 1, 3, and 5
integer digits, randomly selected from 0 to 9, in the encoding phase
and to press a button whenever a digit from the memorized set was
presented in the probe phase. The regressors were created for both
the encoding (E) and probe (P) phase (for 1, 3, 5 digits, and the
averaged data), resulting in eight task datasets for the SIRP task.

3.2.2. Results with the real data

We assume that the fMRI datasets can be modeled with a lower-
dimensional set of latent sources, as in the simulations. Therefore,
again a dimension reduction is performed via PCA before apply-
ing IVA-G. PARAFAC2 may have an upper limit on the number of
components to uniquely estimate, which is K ≥ R(R + 1)(R +
2)(R+3)/24 [25]. With IVA, typical orders are significantly higher,
which allows for a more detailed decomposition that is easier to in-
terpret, as order selection is highly linked to the interpretability of
the source components. Given the space constraints of this paper
and to have a fair comparison, we choose the PCA rank as the num-
ber of components in PARAFAC2. We have studied different orders
for PARAFAC2 and have decided for R = 2 to obtain the most inter-
pretable source components. The best run of IVA-G and PARAFAC2
is found as described in Section 3.1.3. The source components esti-
mated by IVA-G and PARAFAC2 are normalized to unit variance.

Figure 5 shows the absolute values of the SCV covariance ma-
trices estimated by both IVA-G and PARAFAC2, which summarize
the relationship across the task datasets. Figure 5(a) shows that the
first SCV in IVA-G shows high correlations only across subsets of

https://github.com/SSTGroup/independent_vector_analysis
https://github.com/SSTGroup/independent_vector_analysis
https://github.com/tensorly/tensorly
https://github.com/tensorly/tensorly
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Fig. 5: Covariance matrices of the estimated SCVs with real data.
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Fig. 6: Subset of fMRI maps from SCV 1, estimated by IVA-G.
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Fig. 7: Subset of fMRI maps from SCV 1, estimated by PARAFAC2.

task datasets, while the second SCV shows high correlations across
all task datasets. On the other hand, as shown in Figure 5(b), both
SCVs in PARAFAC2 show high correlations only across subsets of
task datasets. Thus, although PARAFAC2 does not model the de-
pendence within an SCV, in the final decomposition, the estimated
SCVs also yield the information related to the relationship of the task
datasets. For both methods, the block-structured covariance matri-
ces indicate that correlations across task datasets form two distinct
groups, one across the AOD and SM datasets and another across the
SIRP datasets. This is because the AOD and SM tasks are more
similar to each other compared with the SIRP task [20].

A subset of the source components, i.e., fMRI maps, corre-
sponding to the block-structured covariance matrix of SCV 1 in
IVA-G and the corresponding SCV 1 in PARAFAC2, are visualized
(thresholded at |z| = 2) in Figure 6 and Figure 7, respectively.
To overcome the sign ambiguity of IVA-G, we first made sure that
the t-value of each significant source component is positive or is
made positive by multiplying the source component and the corre-
sponding column of A[k] with -1, and then we adjusted the signs
of the remaining source components in the same way such that the
activated regions have the same color in each SCV. This way, red /
yellow voxels indicate a higher activation in controls than in patients,
and blue means the opposite. The p-value is the same for all task
datasets in PARAFAC2 and is very small, thus all task datasets pro-
vide a high discrimination between patients and controls. However,
IVA-G can identify the task datasets that provide significantly dif-
ferent activations between patients and controls (p < 0.05), which
improves the interpretability, especially when IVA-G is implemented
with more components. Overall, group-discriminant source compo-
nents estimated for the AOD and SM datasets are showing higher
activations in controls in the auditory and motor regions (red focal
areas in slices 5-7 and 2-3), while the source components in the
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Fig. 8: Dataset covariations estimated by PARAFAC2. The first
component is present in all datasets, and the second component is
mainly present in the SIRP datasets.

SIRP-P datasets are showing higher activations mostly in the motor
and in parts of the visual areas (red focal areas in slices 2-3 and 7-8),
and in the SIRP-E datasets in the visual areas (red focal areas in
slices 6-8). These are the areas associated with the tasks and known
to be affected by schizophrenia from previous studies, and there-
fore are promising candidates for brain-based biomarkers [29, 30].
The Default Mode Network (DMN) (blue focal areas in slices 4-6),
which is present in all but the SM datasets, is activated higher in
patients than in controls. This makes sense as the DMN mostly
represents the resting state: the less concentrated one is on a given
task, the more dominant are the resting state source components,
and typically, controls show a higher task-related suppression of the
DMN than patients [29, 31]. The DMN is more clearly visible in the
SIRP-P dataset for PARAFAC2 than for IVA-G.

PARAFAC2 provides us with an additional summary of the task
datasets through the factor matrix C, shown in Figure 8. We see
that component 1 is present in all task datasets, thus showing an av-
erage component, while component 2 is mainly present in the SIRP
datasets.

4. CONCLUSION

We have applied and compared IVA-G and PARAFAC2 in simula-
tion scenarios and for fusing 13 multi-task fMRI datasets. Our sim-
ulations reveal that while both methods can accurately capture the
underlying source components, PARAFAC2 captures group differ-
ences more reliably, providing a compact representation when sub-
ject scores differ only up to a scaling across different datasets, and
IVA-G performs better when different subject scores are expected
in different datasets. In the fMRI data, both methods are able to
identify source components that discriminate between patients with
schizophrenia and healthy controls, and to capture the relationship
across task datasets in the SCV covariance matrices. A more detailed
comparison of IVA using its different versions based on higher-order
statistics and PARAFAC2 using different constraints could further
demonstrate their versatility. How the two models can be objectively
compared with an order optimally selected for each, is another point
which needs to be further looked into.

5. ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CCF 1618551, NCS
1631838 and NIH grants R01MH123610 and R01MH118695, and
in part by the Research Council of Norway through project 300489,
and in part by the German Research Foundation (DFG) under grant
SCHR 1384/3-2. The hardware used in the computational studies is
part of the UMBC High Performance Computing Facility (HPCF).



6. REFERENCES

[1] B. Khaleghi, A. Khamis, et al., “Multisensor data fusion: A
review of the state-of-the-art,” Information fusion, vol. 14, no.
1, pp. 28–44, 2013.

[2] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: an
overview of methods, challenges, and prospects,” Proceedings
of the IEEE, vol. 103, no. 9, pp. 1449–1477, 2015.

[3] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Ten-
sors for data mining and data fusion: Models, applications, and
scalable algorithms,” ACM Transactions on Intelligent Systems
and Technology, vol. 8, no. 2, 2016.

[4] E. Acar, C. Schenker, et al., “Unraveling diagnostic biomarkers
of schizophrenia through structure-revealing fusion of multi-
modal neuroimaging data,” Frontiers in Neuroscience, vol. 13,
2019.

[5] B. Hunyadi, P. Dupont, et al., “Tensor decompositions and
data fusion in epileptic electroencephalography and functional
magnetic resonance imaging data,” Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery, vol. 7, no. 1,
pp. 1–15, 2017.

[6] H. Luo, H. Tao, et al., “Data fusion with desired reliability in
wireless sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 3, pp. 501–513, 2010.

[7] E. Acar, R. Bro, and A. K. Smilde, “Data Fusion in
Metabolomics Using Coupled Matrix and Tensor Factoriza-
tions,” Proceedings of the IEEE, vol. 103, no. 9, pp. 1602–
1620, 2015.

[8] T. Adali, M. A. B. S. Akhonda, and V. D. Calhoun, “ICA
and IVA for Data Fusion: An Overview and a New Approach
Based on Disjoint Subspaces,” IEEE Sensors Letters, vol. 3,
no. 1, pp. 1–4, 2019.

[9] T. Kim, T. Eltoft, and T.-W. Lee, “Independent vector analy-
sis: An extension of ICA to multivariate components,” Inter-
national conference on independent component analysis and
signal separation, pp. 165–172, 2006.

[10] T. Adali, Y. Levin-Schwartz, and V. D. Calhoun, “Multimodal
Data Fusion Using Source Separation: Two Effective Models
Based on ICA and IVA and Their Properties,” Proceedings of
the IEEE, vol. 103, no. 9, 2015.

[11] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[12] R. A. Harshman, “PARAFAC2: Mathematical and technical
notes,” UCLA working papers in phonetics, vol. 22, no. 10, pp.
30–44, 1972.

[13] P. A. Chew, B. W. Bader, et al., “Cross-language information
retrieval using PARAFAC2,” in KDD ’07: Proceedings of the
13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2007, pp. 143–152.

[14] K. H. Madsen, N. W. Churchill, and M. Mørup, “Quantifying
functional connectivity in multi-subject fmri data using com-
ponent models,” Human brain mapping, vol. 38, no. 2, pp.
882–899, 2017.

[15] M. Roald, S. Bhinge, et al., “Tracing network evolution using
the PARAFAC2 model,” in ICASSP’20: IEEE International
Conference on Acoustics, Speech and Signal Processing, 2020,
pp. 1100–1104.

[16] R. A. Harshman, “Foundations of the PARAFAC procedure:
Models and conditions for an” explanatory” multimodal factor
analysis,” UCLA Working Papers in Phonetics, vol. 16, pp.
1–84, 1970.

[17] J. D. Carroll and J. J. Chang, “Analysis of individual differ-
ences in multidimensional scaling via an n-way generalization
of ”Eckart-Young” decomposition,” Psychometrika, vol. 35,
no. 3, pp. 283–319, 1970.

[18] A. P. James and B. V. Dasarathy, “Medical image fusion: A
survey of the state of the art,” Information Fusion, vol. 19, no.
1, pp. 4–19, 2014.

[19] V. D. Calhoun, T. Adali, et al., “A method for multitask fMRI
data fusion applied to schizophrenia,” Human Brain Mapping,
vol. 27, no. 7, pp. 598–610, 2006.

[20] Y. Levin-Schwartz, V. D. Calhoun, and T. Adali, “Quantifying
the Interaction and Contribution of Multiple Datasets in Fu-
sion: Application to the Detection of Schizophrenia,” IEEE
Transactions on Medical Imaging, vol. 36, no. 7, pp. 1385–
1395, 2017.

[21] M. Anderson, T. Adali, and X.-L. Li, “Joint blind source sepa-
ration with multivariate Gaussian model: Algorithms and per-
formance analysis,” IEEE Transactions on Signal Processing,
vol. 60, no. 4, pp. 1672 –1683, 2012.

[22] R. L. Gollub, J. M. Shoemaker, et al., “The MCIC collection:
a shared repository of multi-modal, multi-site brain image data
from a clinical investigation of schizophrenia,” Neuroinformat-
ics, vol. 11, no. 3, pp. 367–388, 2013.

[23] G. Zhou, Q. Zhao, et al., “Linked Component Analysis from
Matrices to High-Order Tensors: Applications to Biomedical
Data,” Proceedings of the IEEE, vol. 104, no. 2, pp. 310–331,
2016.

[24] T. Adali, M. Anderson, and G. S. Fu, “Diversity in independent
component and vector analyses: Identifiability, algorithms, and
applications in medical imaging,” IEEE Signal Processing
Magazine, vol. 31, no. 3, pp. 18–33, 2014.

[25] H. A. Kiers, J. M. Ten Berge, and R. Bro, “PARAFAC2 - Part I.
A direct fitting algorithm for the PARAFAC2 model,” Journal
of Chemometrics, vol. 13, no. 3-4, pp. 275–294, 1999.

[26] Q. Long, C. Jia, et al., “Consistent run selection for inde-
pendent component analysis: Application to fmri analysis,”
in ICASSP’18: IEEE International Conference on Acoustics,
Speech and Signal Processing, 2018, pp. 2581–2585.

[27] J. Kossaifi, Y. Panagakis, et al., “Tensorly: Tensor learning in
python,” Journal of Machine Learning Research, vol. 20, no.
26, pp. 1–6, 2019.

[28] Members and collaborators of the Wellcome Centre for Hu-
man Neuroimaging, Statistical Parametric Mapping Toolbox:
SPM12, 2020.

[29] M.-L. Hu, X.-F. Zong, et al., “A review of the functional and
anatomical default mode network in schizophrenia,” Neuro-
science bulletin, vol. 33, no. 1, pp. 73–84, 2017.

[30] W. Du, V. D. Calhoun, et al., “High classification accuracy for
schizophrenia with rest and task fmri data,” Frontiers in human
neuroscience, vol. 6, pp. 145, 2012.

[31] S. Whitfield-Gabrieli, H. W. Thermenos, et al., “Hyperactivity
and hyperconnectivity of the default network in schizophre-
nia and in first-degree relatives of persons with schizophrenia,”
Proceedings of the National Academy of Sciences, vol. 106, no.
4, pp. 1279–1284, 2009.


	ScholarWorksCoverSheet2
	finalized_ICASSP
	 Introduction
	 Methods
	 IVA-G
	 PARAFAC2
	 Comparison of the methods

	 Experiments
	 Simulated data
	 Data generation
	 Performance evaluation
	 Results of the simulated data analysis

	 Real data
	 Dataset
	 Results with the real data


	 Conclusion
	 Acknowledgements
	 References


