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Dynamic Portfolio Cuts: A Spectral Approach to
Graph-Theoretic Diversification
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Abstract—Stock market returns are typically analyzed using
standard regression, yet they reside on irregular domains which
is a natural scenario for graph signal processing. To this end,
we consider a market graph as an intuitive way to represent
the relationships between financial assets. Traditional methods
for estimating asset-return covariance operate under the as-
sumption of statistical time-invariance, and are thus unable to
appropriately infer the underlying true structure of the market
graph. This work introduces a class of graph spectral estimators
which cater for the nonstationarity inherent to asset price
movements, and serve as a basis to represent the time-varying
interactions between assets through a dynamic spectral market
graph. Such an account of the time-varying nature of the asset-
return covariance allows us to introduce the notion of dynamic
spectral portfolio cuts, whereby the graph is partitioned into time-
evolving clusters, allowing for online and robust asset allocation.
The advantages of the proposed framework over traditional
methods are demonstrated through numerical case studies using
real-world price data.

Index Terms—Augmented complex statistics, financial signal
processing, graph cut, nonstationary portfolios, portfolio opti-
mization, graph spectra, vertex clustering

I. INTRODUCTION

THE asset-return covariance matrix is central to Modern
Portfolio Theory (MPT), and underpins the mathematical

analysis of financial markets [1][2][3][4]. Investment strategies
typically consider a vector, r(t) ∈ RN , which contains the
returns of N assets at a time instant t, the i-th entry of which
is given by [5]

ri(t) =
pi(t)− pi(t− 1)

pi(t− 1)
(1)

where pi(t) denotes the value of the i-th asset at a time t.
The mean-variance optimization of portfolios asserts that the
optimal weighting vector of assets, w ∈ RN , is obtained as

min
w
{wTRw} s.t. wTm = µ; wT1 = 1 (2)

where m = E {r} ∈ RN is a vector of expected future
returns, R = cov {r} ∈ RN×N is the covariance matrix
of returns, µ is the expected return target, and the second
constraint guarantees full allocation of capital. Despite strong
theoretical foundations behind MPT, one important unresolved
issue remains an accurate estimation of matrix R [6][7][8], as

A. Arroyo is with the Department of Electrical and Electronic Engi-
neering, Imperial College London, London SW7 2AZ, U.K. (E-mail: al-
varo.arroyo17@imperial.ac.uk).

B. Scalzo is with the Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2AZ, U.K. (E-mail: bruno.scalzo-
dees12@imperial.ac.uk).
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well as instability issues associated with its inversion [9][10].
Recent work [11] proposes to resolve these issues through the
portfolio cut paradigm, based on vertex clustering [12][13] of
the market graph [14][15]. By segmenting the original market
graph into computationally feasible and economically mean-
ingful clusters of assets, schemes such as hierarchical risk
parity [10] or hierarchical clustering based asset allocation
[16] can be used to effectively allocate capital and generate
wealth.

Despite its intuitive nature, the above approaches rest upon
an unrealistic assumption of time-invariance of the covariance,
R, despite the well established fact that financial markets
follow nonstationary dynamics [17][18][19]. Furthermore, the
use of sample estimators in nonstationary environments has
been demonstrated to incur significant information loss, as
established by von Neumann’s mean ergodic theorem [20] and
Koopman’s operator theory [21]. This can be seen by consid-
ering an idealised case whereby the asset price returns evolve
in time according to r(t) = Sr(t − 1), with S : CN 7→ CN
denoting a unitary shift operator in a Hilbert space. The mean
ergodic theorem then asserts that the sample mean approaches
the orthogonal subspace of r(t), that is

lim
T→∞

1

T

T−1∑
t=0

r(t) = lim
T→∞

1

T

T−1∑
t=0

St(r(0)) = lim
T→∞

1

T

T−1∑
t=0

Pr(0)

(3)
where P is the orthogonal projection onto the null space of
(I − S), for which ‖Pr(t)‖2 ≤ ‖r(t)‖2 holds owing to the
Cauchy-Schwarz inequality.

In the context of graph data analytics, the need to account
for the evolution of the underlying system dynamics has
driven the development of dynamic learning systems, such as
temporal graph networks [22][23]. We proceed a step further,
and employ a recently proposed class of spectral estimators
for nonstationary signals [24], to retrieve a time-varying co-
variance, R(t), which caters for cyclostationary properties in
market data. This serves as a basis to reformulate the definition
of graph connectivity matrices of the market graph, in order
to allow them to vary with time and account for long-term
economic cycles present in the data. Such nonstationary graph
signal processing [25] operators allow us to introduce the
concept of dynamic spectral vertex clustering which serves
as a basis for the proposed dynamic spectral portfolio cut.
We demonstrate that this makes it possible to account for the
seasonal correlations between vertices in the market graph, an
important feature in the diversification of investment strategies,
which is completely overlooked when using existing static
graph topologies.
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II. PRELIMINARIES

A. A Class of Nonstationary Signal Operators

Consider a time-frequency expansion [26][27] of the asset
returns, r(t) ∈ RN , given by

r(t) =

∫ ∞
−∞

eωtr (t, ω) dω (4)

where r (t, ω) ∈ CN is the realisation of a random spectral
process at an angular frequency, ω, at a time instant, t. The
“augmented form” of this spectral process is then [28]

r (t, ω) =

ï
r (t, ω)
r ∗(t, ω)

ò
∈ C2N (5)

The augmented spectral variable at each time instant is as-
sumed to be multivariate complex Gaussian distributed, with
its pdf is given by [24]

p(r , t, ω)=
exp
î
− 1

2 (r (t, ω)−m(ω))
H
R−1(ω)(r (t, ω)−m(ω))

ó
πNdet

1
2 (R(ω))

(6)
where the augmented spectral mean and covariance are re-
spectively given by

m(ω) = E {x(t, ω)} =

ï
m(ω)
m∗(ω)

ò
(7)

R(ω) = cov {x(t, ω)} =

ï
R(ω) P(ω)
P∗(ω) R∗(ω)

ò
(8)

Owing to the linearity of the Fourier operator, the time-domain
counterpart of the spectral variable will also be multivariate
Gaussian distributed, since a linear function of Gaussian ran-
dom variables is also Gaussian distributed. Hence, the vector
of returns, r(t), is distributed as

r(t) ∼ N (m(t),R(t)) (9)

where m(t) ∈ RN and R(t) ∈ RN×N are respectively the
time-varying mean vector and covariance matrix. Of particular
interest to this work is the time-varying covariance, defined as
[24]

R(t) = cov {r(t)} = E
{
s(t)sT(t)

}
=

∫ ∞
−∞

∫ ∞
−∞
e(ω−ν)tR(ω, ν) + e(ω+ν)tP(ω, ν) dωdν

(10)

where s(t) = r(t)−m(t) denotes the centred returns. Observe
that R(t) represents a sum of cyclostationary components,
each modulated at an angular frequency, ω.

B. Compact Spectral Representation

In order to discretize the above concept, consider a set of
M frequency bins, ω = [ω1, ..., ωM ]T, which form a discrete
frequency spectrum, so that the time-frequency expansion in
(4) therefore becomes

r(t) =
1√
2M

M∑
m=1

(
eωmtr (t, ωm) + e−ωmtr ∗(t, ωm)

)
(11)

or in a compact form

r(t) = Φ(t,ω)r (t,ω) (12)

The term Φ(t,ω) ∈ CN×2MN is referred to as the augmented
spectral basis, defined as

Φ(t,ω) =
[

Φ(t,ω) Φ∗(t,ω)
]

(13)

Φ(t,ω) =
1√
2M

[
eω1tIN · · · eωM tIN

]
(14)

with IN ∈ RN×N as the identity matrix, and r (t,ω) ∈ C2MN

as the augmented spectrum representation, given by

r (t,ω) =

ï
r (t,ω)
r ∗(t,ω)

ò
, r (t,ω) =

 r (t, ω1)
...

r (t, ωM )

 (15)

Similarly, the augmented spectral mean, m(ω) ∈ C2MN ,
defined as

m(ω) = E {r (t,ω)} =

ï
m(ω)
m∗(ω)

ò
, m(ω) =

 m(ω1)
...

m(ωN )


(16)

while the augmented spectral covariance, R(ω) ∈
C2MN×2MN , is given by

R(ω) = cov {r (t,ω)} =

ï
R(ω) P(ω)
P∗(ω) R∗(ω)

ò
R(ω) =

 R(ω1) · · · R(ω1, ωM )
...

. . .
...

R(ωM , ω1) · · · R(ωM )


P(ω) =

 P(ω1) · · · P(ω1, ωM )
...

. . .
...

P(ωM , ω1) · · · P(ωM )

 (17)

Finally, we arrive at the least-squares estimates of the
augmented spectral moments [24], in the form

m̂(ω) =
1

T

T−1∑
t=0

ΦH(t,ω)r(t) (18)

R̂(ω) =
1

T

T−1∑
t=0

ΦH(t,ω)ŝ(t)ŝT(t)Φ(t,ω) (19)

with ŝ(t) = r(t)− m̂(t) = r(t)−Φ(t,ω)m̂(ω).

C. Graph-Theoretic Diversification

1) Graph Signal Processing: Following the notation in
[12], we define a graph G = {V,B} as being composed of a
set of vertices V , which are connected through a set of edges,
B = V × V , where the symbol × denotes a direct product
operator.

The connectivity of a graph, G, is described through a
weight matrix, W ∈ RN×N , the elements of which are non-
negative real numbers, which designate the connection strength
between the vertices m and n, so that

Wmn

®
> 0 if (m,n) ∈ B
= 0 if (m,n) /∈ B

(20)
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The degree matrix, D ∈ RN×N , is a diagonal matrix whose
diagonal elements, Dnn, are equal to the sum of weights of
all edges connected to a vertex n in an undirected graph

Dnn =

N∑
m=1

Wnm (21)

while the Laplacian matrix is given by

L = D−W (22)

2) Market Graph: A universe of N assets can be modeled
as a market graph, with the weight matrix defined as

W =


1 |σ12|√

σ11σ22
. . . |σ1N |√

σ11σNN

|σ21|√
σ11σ22

1 . . . |σ2N |√
σ22σNN

...
...

. . .
...

|σN1|√
σNNσ11

|σN2|√
σNNσ22

. . . 1

 (23)

where σnm denotes the covariance between the returns of asset
n and asset m. Note the symmetry of the weight matrix, that
is, σnm = σmn.
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Fig. 1. Market graph formed from assets in the Bloomberg Commodity Index.

Fig. 1 illustrates one of the fundamental problems when
using the covariance matrix in the context of financial in-
vestment, as it assumes full vertex connectivity, and thus
does not appropriately account for real-world market structure
[10][11][29][30].

3) Vertex Clustering and Minimum Cuts: In order to allow
for the clustering of asset vertices into distinct subgroups, we
shall introduce vertex clustering based on minimum cuts.

Given an undirected graph, G, defined by set of vertices, V ,
and edge weights, W , we desire to group the vertices of the
graph into two subsets, E and H, such that E ⊂ V , H ⊂ V ,
E ∪ H = V and E ∩ H = ∅. To this end, a cut of graph, G,
given the subset of vertices E and H is given by [12]:

Cut(E ,H) =
∑

m∈E,n∈H
Wmn (24)

A minimum cut is then the cut with the minimal sum of
weights joining subsets E and B. Note that finding the minimal
cut in a graph is a combinatorial problem, and thus computa-
tionally prohibitive for large graph topologies.

In the context of asset allocation in portfolios, it is often
desirable that sub-graphs are as a large as possible, to prevent
large disparity in asset splits. This motivates the definition of
a normalised ratio cut, which takes the form [31]

CutN(E ,H) =

Å
1

NE
+

1

NH

ã ∑
m∈E,n∈H

Wmn (25)

where NE and NH represent is the number of elements in
subsets E and H, respectively. The first step to obtaining a
computationally tractable way of performing minimum-cut-
based vertex clustering is through the notion of of an indicator
vector, x ∈ RN . The elements of an indicator vector are
sub-graph-wise constant, with the constant values within each
cluster of vertices, but distinct across clusters. This implies
that x may serve to uniquely identify the assumed cut of the
graph into disjoint subsets [11], as e.g. in the case of two
sub-graphs [12]

x(n) =

®
1
NE
, if n ∈ E

− 1
NH

, if n ∈ H
(26)

The normalized cut defined in (25), can be written in terms
of the graph Laplacian and indicator vector as

CutN(E ,H) =
xTLx

xTx
(27)

so that the normalized cut can be considered as a minimization
problem

min
x

xTLx

s.t. xTx = 1 (28)

The solution to the above problem is given by xopt = u1,
[12] the second eigenvector of the graph Laplacian, L, also
known as the Fiedler eigenvector [32].

III. DYNAMIC SPECTRAL PORTFOLIO CUTS

Based on the above graph-theoretic interpretation of finan-
cial markets, we proceed to introduce a dynamic market graph,
based on the time-varying covariance matrix presented in (10).
To this end, we first define the dynamic weight matrix as

W(t) = V(t)
∣∣R(t)

∣∣VT(t) (29)

where V(t) is a diagonal matrix containing the inverse square
root of the diagonal elements in R(t) at a given time instant,
t, in accordance with the definition in (23). Note that the
modulus operator | · | is applied element-wise. This time-
varying generalisation of the market graph makes it possible to
capture economic cycles and shocks, thus allowing for a more
meaningful and informative analysis of asset relationships.

In the context of graph data analytics, time-varying graph
matrices naturally give rise to the concept of dynamic graph
matrix spectra, whereby the eigenspectrum and eigenspace
also become nonstationary, and have embedded information
on the cyclical relationships captured by R(t). Mathematically,
the singular value decomposition of the graph weight matrix
in (29) now becomes

W(t) = U(t)Λ(t)UT(t) (30)

given that W(t) it is a symmetric square invertible matrix.
The eigenvector and eigenvalue matrices, U(t) and Λ(t), are
in turn respectively given by
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U(t) =
[
u1(t) u2(t) . . . uN (t)

]
(31)

Λ(t) =


λ1(t) 0 . . . 0

0 λ2(t) . . . 0
...

...
. . .

...
0 0 . . . λN (t)

 (32)

This allows us to carry out a time-varying extention of
the operations traditionally performed on graphs, which we
refer to as dynamic graph data analytics, which includes the
notions of time-varying clustering or vertex dimensionality
reduction. In the context of the market graph, this would imply
clustering assets into different sub-graphs at each time instant,
t, thereby modelling more accurately the seasonal economical
relationships between assets across a business year.

Following the capital allocation scheme proposed in [11],
we denote by hi the percentage of capital allocated to Gi, and
consider two cases:

1) hi = 1
2Ki

, where Ki represents the number of cuts made
to the market graph to obtain the cluster in question;

2) hi = 1
K+1 , where K represents the number of individual

clusters generated through the cuts.
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Fig. 2. Example of K = 2 minimum cuts performed on the the Bloomberg
Commodity Index (BCOM) market graph, with 23 vertices and at 4 different
time instants. Note that the dynamic nature of the graph weight matrix results
in different cluster formations being generated at each time instant, t.

IV. SIMULATIONS

The performance of the proposed dynamic portfolio cuts
framework was investigated using historical price data of the
23 commodity futures contracts constituting the Bloomberg
Commodity Index in the period 2010-01-01 to 2021-05-17, as
well as the 100 most liquid stocks in the S&P 500 index, based
on average trading volume, between 2015-01-01 to 2021-
05-17. The data was partitioned into a training (in-sample)
dataset, with dates 2010-01-01 to 2016-01-01 for the BCOM
index and 2014-01-02 to 2020-01-02 for the S&P 500, which
was used to estimate the spectral covariance and retrieve its
time-varying counterpart. Subsequently, asset clustering was
carried out on the dynamic market graph and tested on data
from the test (out-of-sample) dataset, with dates 2016-01-01 to
2021-05-17 for the BCOM index and 2020-01-02 to 2021-05-
17 for the S&P 500. Fig. 3 shows a comparison between the
proposed dynamic portfolio cut and its static counterpart, as
well as standard equally-weighted (EW) and MVO portfolios.
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Fig. 3. Out-of-sample performance of all strategies on BCOM index (top) and
S&P 500 (bottom) for K = 15 and K = 10 market graph cuts respectively.

The results shown in Fig. 3 show that the proposed dynamic
spectral cuts framework consistently results in a larger cumula-
tive return compared to both standard and existing graph-based
approaches. As desired, the so enabled high average returns,
coupled with the low variance of the proposed strategy, result
in higher Sharpe ratios, as summarized in Tables I and II.

TABLE I
SHARPE RATIO OVER A VARYING NUMBER OF CUTS K IN BCOM INDEX.

Strategy Allocation K = 1K = 2K = 3K = 4K = 5K = 10K = 15

SpectralCutN 1

2Ki
2.15 2.77 2.7 2.73 2.72 2.89 3.19

SpectralCutN 1
K+1 2.15 2.88 2.51 2.37 1.75 2.22 1.71

CutN 1

2Ki
1.96 1.14 1.12 2.22 2.08 0.75 1.07

CutN 1
K+1 1.62 1.81 1.86 1.85 1.99 1.78 1.3

TABLE II
SHARPE RATIO OVER A VARYING NUMBER OF CUTS K IN S&P 500.

Strategy Allocation K = 1K = 2K = 3K = 4K = 5K = 10K = 50

SpectralCutN 1

2Ki
1.61 1.78 1.86 1.87 1.87 1.88 1.76

SpectralCutN 1
K+1 1.61 1.6 1.51 1.37 1.21 1.12 0.97

CutN 1

2Ki
0.86 0.81 0.94 0.86 0.84 0.82 0.85

CutN 1
K+1 1.63 1.5 1.23 1.35 1.25 1.05 0.91

Note that graph-based portfolio strategies inevitably result
in long-only portfolios, given the positive weights connecting
the vertices of a graph. As such, portfolio cuts and dynamic
portfolio cuts are expected to work well on upward trending
indices, such as the S&P 500, which are only composed of
stocks, and have a tendency to grow over time.

V. CONCLUSIONS

A novel dynamic spectral graph framework has been in-
troduced which allows to model the interaction of financial
assets residing on the market graph over time. This is achieved
through a class of spectral estimators of the augmented spectral
covariance, which is shown to account for cyclostationary
trends in market data, and thus economic cycles and shocks.
Simulations have demonstrated the advantages of the proposed
framework over stationary portfolio cut techniques on the mar-
ket graph, as well as a dominant performance over traditional
portfolio optimization approaches.
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