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ABSTRACT
In this paper, we conduct a cross-dataset study on paramet-
ric and non-parametric raw-waveform based speaker embed-
dings through speaker verification experiments. In general,
we observe a more significant performance degradation of
these raw-waveform systems compared to spectral based sys-
tems. We then propose two strategies to improve the per-
formance of raw-waveform based systems on cross-dataset
tests. The first strategy is to change the real-valued filters into
analytic filters to ensure shift-invariance. The second strat-
egy is to apply variational dropout to non-parametric filters to
prevent them from overfitting irrelevant nuance features. By
combining these strategies, we achieve results comparable to
spectral based systems on both the VoxCeleb and VOiCEs
datasets. Futhermore, we demonstrate that the learned filters
carry little noise compared to existing non-parametric learn-
able front-ends.

Index Terms— Speaker embedding, filterbank design,
raw waveform, robustness, domain mismatch

1. INTRODUCTION

The design and analysis of hand-crafted features inspired by
human auditory perception, such as mel frequency cepstral
coefficients (MFCCs), has long been an active area of re-
search in audio processing. In recent years, increasing atten-
tion has been directed toward the substitution of such features
for data-driven raw-waveform models. Earlier research on
sample-level deep neural networks (DNNs) has demonstrated
the ability to learn suitable feature embeddings directly from
the raw waveform for phone classification [1], music classi-
fication [2] and speaker recognition [3]. The performance of
these systems is comparable to, and in some cases even sur-
passes, traditional spectral based methods. On feature inter-
pretability, Tuske et. al. [1] showed that DNNs are able to
learn bandpass filters purely from the raw waveform without
any prior knowledge, and that the first layer can be interpreted
as performing a “quasi time-frequency” analysis on audio.

This work is partially funded by Voice Biometric Groups and National
Science Foundation grant DGE-1922591.

Inspired by these findings, contemporary raw-waveform
models typically comprise a modular structure [4, 5, 6, 7]:
First, a waveform encoder is used to learn a meaningful
representation for audio waveforms and to reduce the dimen-
sionality of feature maps, also referred to as ‘wavegrams’ [5].
Then, an additional backbone network further processes the
wavegram into embeddings. Under this framework, the train-
able front-end filterbanks are the key components of raw-
waveform based models. Ideally, the filters should only
model task-relevant information, while ignoring other nui-
sance aspects [8]. However, directly learning from densely
sampled audio inputs using DNNs without any prior knowl-
edge can lead to over-fitting [9].

There are two main strategies for effectively training a
group of meaningful filters from scratch to achieve compara-
ble results to spectral features. These include parametric fil-
terbanks, and non-parametric filterbanks combined with some
initialization or regularization strategy. Both filterbank varia-
tions are trained together with a respective network architec-
ture. Learnable parametric filterbanks constrain the filters by
optimizing only a few parameters, e.g., center frequency and
bandwidth [9, 10], of pre-defined parametric functions. With
such strong constraints, the learned filters generally follow
expected shapes and are easier to interpret. In contrast, non-
parametric learnable filterbanks have little to no regulariza-
tion. In order to mediate this lack of structure, various tech-
niques borrowed from signal processing, such as Gabor ini-
tialization [11], multi-scale analysis [7], learnable compres-
sion functions [9] and complex convolution [12], are usually
applied to the first few layers to avoid overfitting and to speed
up convergence.

The performance of raw-waveform based models on
cross-domain speech recognition [8, 13] and source separa-
tion [14] tasks is known to be susceptible to mismatch that on
in-domain datasets. In this paper, we compare the efficacy of
raw-waveform speaker embeddings to that of traditional mel-
spectrum based methods under different acoustic conditions.
We propose several strategies to improve the performance of
raw-waveform embeddings on cross-domain tasks, including
making use of filter analycity and variational dropout to learn
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sparse filter coefficients. Finally, we visualize and analyze
the learned filter responses. The complete code for training
and inference will also be made available1.

2. CROSS-DATASET STUDIES

In this section, we present an empirical study comparing
several raw-waveform based speaker embeddings with mel-
spectrum based models under both matched and mismatched
conditions across several speaker verification tasks.

2.1. Datasets

VoxCeleb [15, 16] is a large-scale dataset containing speech
spanning a wide range of speakers under uncontrolled acous-
tic conditions. We use the VoxCeleb2 development partition
for training. We also add 100k augmented noisy utterances by
adding reverberation, noise, music, and babble to the original
speech files following the Kaldi [17] recipe2. We use the full
VoxCeleb1 dataset, including Vox1-O, Vox1-E and Vox1-H,
to perform matched condition tests.

VOiCEs [18], i.e., the Voices Obscured In Complex En-
vironmental Settings corpus, was released with the aim to
simulate realistic data under complicated acoustic conditions.
It was created by playing Librispeech [19] recordings inside
multiple room configurations and re-recording with 12 differ-
ent microphones placed at various locations. In addition, pre-
recorded background noise plus reverberation or echo were
played along with the foreground speech. For evaluating the
robustness under mismatched conditions, we used the evalua-
tion partition of this corpus, which consists of 3.6 million trial
pairs derived from 11,392 utterances.

2.2. Experimental setup

We select one parametric waveform encoder, SincNet [10],
and two non-parametric encoders, multi-scale filters [7] and
TDFbank [11], to compare against mel-spectrum based sys-
tem. All of the speaker embedding systems employ 30 filters
of length 400 sample (25ms sampling at 16kHz) with a stride
size of 5 to extract speech features. Then we feed the out-
put of these three trainable filterbanks to the same backbone
network. We model the common backbone with sample-level
CNN architectures [2, 5, 7]. Specifically, the waveform em-
beddings output from the learnable filters are first fed into five
down-sampling blocks with a decimation rate of 2. Hence,
the sequence length of the feature maps is reduced by a fac-
tor of 160 in total, equating to 10 ms of hop size. In the
downsampling block, we replace the original dense convo-
lution in [7] with simple depth-wise separable convolutions,
inspired by [6, 20]. In this way, the number of parameters

1https://github.com/gzhu06/TDspkr-mismatch-study
2https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2

is largely reduced. Finally, speaker embeddings are extracted
with time delay neural networks (TDNN).

For the spectral baseline, we use fixed mel-scaled filter-
bank and the above mentioned backbone network, named ‘x-
conv-vector’, for a fair comparison. As a sanity check of
the TDNN model’s capability, we also train a vanilla MFCC
based model, ‘x-vector (Kaldi)’ and a mel-fbank based model
‘x-vector’ in PyTorch for reference. In order to eliminate the
influence of back-end scoring systems on the final verifica-
tion results, we simply used cosine similarity for scoring. We
also compute the equal error rate (EER) to compare different
systems.

2.3. Results and analysis
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Fig. 1. EER (%) comparison of mel-spectrum based models
and raw-waveform based models on different test sets with
cosine similarity scoring. Error bars show a 95% confidence
interval.

In Fig. 1, we demonstrate EER degradation across datasets
for raw-waveform based speaker embeddings. In matched
test conditions on VoxCeleb datasets, raw-waveform based
speaker embeddings perform on par with the three mel-
spectrum based systems. However, in the VOiCEs evaluation
dataset, both parametric and non-parametric waveform mod-
els lead to degradation compared to spectral based models.
It is noted that among all of the six methods, only ‘x-vector
(Kaldi)’ performs voice activity detection, making it a less
fair baseline. This may also be an important reason for the
performance mismatches among mel-spectrum baselines.

We also visualize learned filter responses after training on
the noise augmented VoxCeleb dataset, shown in Fig. 2. We
can see that multi-scale filters and TDFbank are much nois-
ier compared to SincNet, and the frequency resolution in the
higher frequencies of multi-scale filters is worse.

3. ROBUST IMPROVEMENT STRATEGIES

In this section, we propose two strategies and discuss their ef-
fect on the robustness of raw-waveform speaker embeddings



Fig. 2. Learned filter responses (normalized by the maximum
value for better visualization): (a) multi-scale filters, (2) sinc
filters (3) the real part of TDFbank.

under mismatched conditions. Neither strategy introduces ad-
ditional parameters or computation. The experimental set-
tings and training details are the same as in section 2.2, ex-
cept one thing: we also integrated PLDA scoring for the final
comparisons on complete speaker verification systmes. We
adopt the Gaussian PLDA from Kaldi, which was trained on
the augmented VoxCeleb-2 training dataset and evaluated on
both the VoxCeleb1 and VOiCEs test datasets. Before train-
ing, the extracted speaker embeddings were projected onto
a 200-dimensional vector with LDA, followed by whitening
and length normalization.

3.1. Proposed method

Analytic filterbanks. In the original TDFbank architec-
ture, N real filters and N imaginary filters are initialized
into analytic pairs with Gabor wavelets to approximate the
mel-filterbanks. Then, a magnitude response is computed
using L2 pooling across the output of the real and imagi-
nary pairs. Under the original setting, the weights of the real
and imaginary filter components are independently trained
without any constraints. As a result, although the initial
mel-scale of frequency is mostly preserved after training,the
analyticity of the initialization is not preserved. Analytic
filters [21] are shift-invariant with respect to time, a desirable
property for time-frequency representations. Downsampled
convolutions or pooling layers in waveform encoders are not
shift-invariant, which compromises their performance on ro-
bust classification tasks [22]. A natural way to constrain the
analycity of learned complex filterbanks is to learn only the
real component of a filter, and to and infer the imaginary
component directly using the Hilbert transform [14, 23]. In
this way, the magnitude of the filter response is shift-invariant
and the number of filter parameters is essentially halved.
Therefore, in this work, we apply the Hilbert transform to
obtain the corresponding imaginary filters of real filters. We
do this for both the non-parametric and parametric sinc filters.

Sparse variational dropout. Observing the noisy filter
responses in Fig. 2, we believe that the non-parametric fil-
ters tend to overfit the noisy training data, learning nuisance

aspects of the recordings. One way to ease this problem is
to regularize the network by dropping irrelevant weights with
sparse variational dropout (VD) [24]. VD was originally pro-
posed as a model compression technique to sparsify DNN
weights. In this work, we follow our previous work [23] to
sparsify filters by applying VD in the first layer of the raw-
waveform models.

Dropout can be seen as injecting fixed Bernoulli noise or
Gaussian noise into weights during training. Instead of set-
ting a fixed variance as in Gaussian dropout (GD), VD injects
an individual multiplicative Gaussian noise ξij ∼ N(1, αij)
to every weight, with the variance αij consisting of model pa-
rameters learned with an approximated KL-divergence mea-
sure. By learning an individual variance for every weight,
VD is able to induce sparsity across learned weights when
αij →∞ (equivalent to p = 1 in Bernoulli dropout). In such
cases, the weights can be ignored or removed from neural net-
works during inference time.

3.2. Results

Comparison. In this experiment, we evaluate the proposed
strategies in the same experimental setup as in Section 2. We
can see that the ‘Multi-scale’, ‘Sinc’ and ‘TDF’ baselines in
Table 1 show more degradation on VOiCEs test set compared
to spectral baselines, which is consistent with the conclu-
sion in Sec. 2. By comparing ‘TDF’ and ‘Sinc’ with their
corresponding analytic versions, we find that ‘Sinc+H’ only
achieves a marginal improvement over the ‘Sinc’ baseline
on VoxCeleb but a slight degradation on VOiCEs, whereas
‘TDF+H’ significantly outperforms the ‘TDF’ baseline on
VOiCEs and yields comparable results on VoxCeleb. This
shows that the analyticity constraint helps non-parametric
filters learn robust representations, but it is not the case for
parametric filters. This may be because the benefit of filter
analyticity is mainly on learning transient components, which
cannot be well modeled in the sinc filters anyway. Compar-
ing ‘TDF’ and ‘TDF+VD’, we can also observe a significant
improvement on VOiCEs without compromising the perfor-
mance on VoxCeleb with the help of VD. Among all of the
raw-waveform based systems, ‘TDF+H+VD’ achieves the
best results on the out-of-domain test set, with both VD and
analytic filters helping to boost the performance. Compared
with the three spectral based models, it achieves compara-
ble results to ‘x-conv-vector’ with a similar model size and
training strategy. Note that x-vector (Kaldi) achieves similar
performance to that reported in [26] on the VOiCEs dataset;
this further validates our TDNN backbone implementation.

Ablation study. In order to better demonstrate the ef-
fectiveness of each component without the influence of the
scoring backend, we conducted several ablation studies using
cosine similarity, as shown in Table 2. The improvement of
applying analytic filters is consistent with the PLDA backend
results in Table 1. Different from results in Table 1, we find
that ‘TDF+H+VD’ outperforms ‘TDF+H’ when cosine simi-



Table 1. EER (%) comparison on different test sets. All models are trained on the noise augmented VoxCeleb2 training set and
scored with PLDA backend. A statistical significance test is performed using a bootstrap procedure [25]: an absolute value of
0.05 of EER difference for Vox1-E and Vox1-H is outside the 95% confidence interval for all methods, while for Vox1-O and
VOiCEs the EER difference has to be larger than 0.15 and 0.13 respectively.

System Feature VoxCeleb-O VoxCeleb-E VoxCeleb-H VOiCEs
EER min-DCF EER min-DCF EER min-DCF EER min-DCF

x-vector (Kaldi) MFCC 2.26 0.256 2.37 0.279 4.14 0.408 6.79 0.553
x-vector Mel-fbank 2.37 0.264 2.42 0.280 4.18 0.406 8.14 0.658

x-conv-vector Mel-fbank 2.04 0.241 2.17 0.252 3.79 0.379 7.10 0.581
Multi-scale

Waveform

2.28 0.273 2.38 0.285 4.17 0.408 8.54 0.705
Sinc 2.37 0.287 2.32 0.278 4.02 0.400 8.55 0.682

Sinc+H 2.15 0.270 2.28 0.271 3.91 0.396 8.90 0.669
TDF 1.98 0.230 2.19 0.249 3.85 0.383 8.38 0.663

TDF+H 2.01 0.261 2.27 0.263 3.98 0.396 7.46 0.621
TDF+VD 1.98 0.235 2.30 0.264 4.05 0.385 7.68 0.626

TDF+H+VD 1.99 0.266 2.26 0.253 3.93 0.385 7.40 0.633

Table 2. EER (%) comparison on different test sets. All mod-
els are trained on the augmented VoxCeleb2 training set and
scored with cosine similarity.

System Vox1-O Vox1-E Vox1-H Voices
x-vector (Kaldi) 3.12 2.9 4.99 8.41

x-vector 3.12 2.94 5.07 10.78
x-conv-vector 2.93 2.7 4.67 10.45

TDF 2.79 2.69 4.67 12.74
TDF+VD 3.01 2.79 4.81 11.10
TDF+H 2.72 2.81 4.86 10.72

TDF+H+BD 3.06 2.77 4.83 11.69
TDF+H+GD 2.98 2.73 4.83 11.29
TDF+H+VD 2.72 2.72 4.72 10.32

larity is used. Similarly, ‘TDF+H+VD’ outperforms ‘x-conv-
vector’ slightly on VOiCEs. These differences suggest that by
dropping filter weights through VD, the final learned speaker
embeddings tend to become less Gaussian, hence yield worse
results with the PLDA backend. We also experimented with
different dropout techniques shown in the last four rows in
Table 2, we can observe that BD and GD are not helpful in
improving robustness compared to ‘TDF+H’ baseline, while
VD achieves better verification results in all of in-domain and
out-of-domain tasks.

Filter visualization. In Fig. 3, we visualize several
learned non-parametric filters at different frequency bands
under different training settings for TDF based methods.
When trained on the noisy dataset, the learned filters are less
regular and much noisier than filters trained on the clean
dataset. With the help of VD, the learned filter at 345Hz is
similar to the one trained without noise, and only the center
weights of the filters at 2258Hz and 7937Hz are retained. The
‘jitters’ picked up from the noise are not present in the filters.
Although there is no significant improvement on EER over
the baseline with VD, this verifies that during training, raw
waveform models tend to capture nuisance information from
noisy data, and proves that dropping out the corresponding
weights does not affect the final performance.

Fig. 3. Examples of learned filters with their maximum re-
sponse frequency labeled. Top row: ‘TDF+H’ filters trained
on clean VoxCeleb. Middle row: ‘TDF+H’ filters trained on
noise augmented VoxCeleb. Bottom row: ‘TDF+H+VD’ fil-
ters trained on noise augmented VoxCeleb.

4. CONCLUSION

In this paper, we performed a systematic empirical study of
multiple parametric and non-parametric raw-waveform based
speaker embeddings. In comparison to several mel-spectrum
baselines, these raw-waveform based methods yield similar
results on in-domain tests, but show a more significant degra-
dation on cross-domain tests. In order to bridge this perfor-
mance gap, we proposed to apply filter analyticity to promote
shift-invariance of the learned filters and variational dropout
on non-parametric filters to discard task irrelevant informa-
tion during training. Finally, we observed a significant im-
provement for non-parametric raw-waveform based embed-
dings with respect to cosine similarity and PLDA backends,
achieving similar performance to the mel-spectrum baselines.
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