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ABSTRACT

This paper is concerned with enhancing data utility in the

privacy watchdog method for attaining information-theoretic

privacy. For a specific privacy constraint, the watchdog

method filters out the high-risk data symbols through ap-

plying a uniform data regulation scheme, e.g., merging all

high-risk symbols together. While this method entirely trades

the symbols resolution off for privacy, we show that the data

utility can be greatly improved by partitioning the high-risk

symbols set and individually privatizing each subset. We

further propose an agglomerative merging algorithm that

finds a suitable partition of high-risk symbols: it starts with

a singleton high-risk symbol, which is iteratively fused with

others until the resulting subsets are private. Numerical simu-

lations demonstrate the efficacy of this algorithm in privately

achieving higher utilities in the watchdog scheme.

Index Terms— Information-theoretic privacy; Watchdog

privacy mechanism; Privacy-utility trade-off.

1. INTRODUCTION

Industries and governments are increasingly sharing data to

unlock economic and societal benefits through advances in

data analytics and machine learning. However, such data

also contains sensitive information about individuals or busi-

nesses, which makes the privacy regulators, users, and data

providers concerned about the leakage of confidential infor-

mation, either explicitly or implicitly. In signal processing

and information theory, data privacy is underpinned in terms

of a measure called information lift [1, 2].

To evaluate how much private data X is informative about

the confidential data S, the lift measures the change in the

posterior belief p(s|x) from the prior belief p(s) for each in-

stance of s and x by

l(s, x) =
p(s|x)

p(s)
. (1)
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ε = 1 utility privacy leakage

complete merging 0.5913 0.8037

two-subset merging 0.7335 0.8488

Table 1: An example of how subset merging can enhance

utility in the watchdog mechanism.

It is clear that a small lift indicates limited private informa-

tion gain by the adversary and therefore the more private X

is. The lift is the elementary measure in almost all informa-

tion leakage measures, e.g., mutual information [1,3], Sibson

mutual information [4–6], α-leakage [7] and local differential

privacy [8, 9]: as proved in [2], if lift is bounded, all these

leakage measures are also bounded.

The existing approach to attain lift-based privacy is the

watchdog method proposed in [2]. For a specific privacy con-

straint, i.e., a threshold ǫ on the lift, the watchdog method

filters out and privatizes the high-risk symbols of X . The

authors in [2] adopted a uniform approach: merging all high-

risk symbols together into a ‘super’ symbol, which is proved

in [6, 10] to be the optimal privatization scheme in attain-

ing data privacy. However, this uniform approach neglects

an important issue in data privacy: to achieve the benefits

of data sharing, the privatized data should provide a satisfac-

tory level of usefulness in X .1 Despite the relaxation attempts

in [6, 10], the complete merging method minimizes the reso-

lution of high-risk symbols and significantly deteriorates data

utility, which is at odds with the purpose of data sharing.

In fact, even a small alteration can greatly enhance the

data utility. In Table 1, we arbitrarily cut the high-risk symbol

set (of size 7) into two subsets, each of which is then priva-

tized individually. The utility (measured by mutual informa-

tion) is increased significantly without sacrificing too much

data privacy, which remains below the design constraint ǫ.

This not only shows that the complete merging approach is

an ‘overkill’ in terms of data utility, but also suggests a parti-

tioned privatization approach.

1The data utility is usually quantified by average performance measures

such as mutual information [3], f -divergence [11] and Hamming distortion

[12]. We use mutual information in this paper.
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In this paper, we propose the subset merging method for

watchdog mechanism to enhance the data utility. Finding

the best partition of high-risk symbols set to achieve optimal

utility is generally a combinatorial problem. Accordingly,

we propose a heuristic greedy algorithm to find good sub-

sets to merge, which guarantees data privacy. To do so, this

greedy algorithm tries to search the finest partition of the orig-

inal high-risk symbols set that ensures the resulting lift of the

whole dataset does not exceed ǫ. It starts with the singleton

partition of high-risk symbols (highest resolution) and itera-

tively merges symbols until lift values of the resulting subsets

are all below ǫ. Numerical simulations show that our pro-

posed algorithm enhances utility significantly and maintains

the privacy leakage constraint.

2. SYSTEM MODEL

Denote random variables S and X the sensitive and public

data, respectively. The joint distribution p(s, x) describes the

statistical correlation between S and X . To protect the pri-

vacy of S, we sanitize X to Y by the transition probability

p(y|x). Here, for each x, y, p(y|x) = p(y|x, s), ∀s and there-

fore the Markov chain S → X → Y is formed.

The watchdog method is based on the logarithm of the lift

measure

i(s;x) = log l(s;x).

For each x ∈ X , denote the maximum symbol-wise informa-

tion leakage by maxs∈S |i(s, x)|, where

ω(x) = max
s∈S
|i(s, x)|. (2)

Applying an upper bound ǫ to ω(x) for all symbols x ∈ X ,

the whole alphabetX is divided into two subsets: the low-risk

subset is given by Xε , {x ∈ X : ω(x) ≤ ε} that is safe to

publish, and the high-risk symbol set

X c
ε = X \ Xε , {x ∈ X : ω(x) > ε}

that requires some treatment before the data publishing.

The authors in [6, 10] adopt a uniform randomization

scheme

p(y|x) =











1{x=y} x, y ∈ Xε,

R(y) x, y ∈ X c
ε ,

0 otherwise,

(3)

where R(y) is complete merging solution, e.g., where there is

only one super symbol y∗ ∈ X c
ε such that R(y∗) = 1 for all

x ∈ X c
ε and R(y) = 0 otherwise.

After randomization, the log-lift is given by i(s, y) =

log p(y|s)
p(y) where p(y|s) =

∑

x∈X p(y|x)p(x|s) due to the

Markov property and p(y) =
∑

x∈X p(y|x)p(x). We can ex-

tend the notion of the log-lift, and ω(x) from a single x ∈ X
to a subset XQ ⊆ X [10]:

i(s,XQ) = log
p(XQ|s)

p(XQ)
, ω(XQ) = max

s∈S
|i(s,XQ)|, (4)

Algorithm 1: Make a refinement of X c
ε

1 Input: X , ε, p(s, x)
2 Output: PX c

ε
= {X1,X2, · · · Xp}

3 Initialize: Obtain {Xε,X
c
ε }, XQ ← X

c
ε , and p = 1

while |XQ| > 0 do

4 Xp = {argmax
x∈XQ

ω(x)}, and XQ ← XQ \ Xp;

5 while ω(Xp) > ε & |XQ| > 0 do

6 x∗ = argmin
x∈XQ

ω(Xp ∪ {x})

7 Xp ← Xp ∪ {x
∗} and XQ ← XQ \ {x

∗};

8 end

9 PXQ
= {X1,X2, · · · ,Xp}, and p← p+ 1

10 end

11 while ω(Xp) > ε & |PXQ
| > 1 do

12 Xk = argmin
1<i<p

ω(Xp ∪ Xi);

13 Xp ← Xp ∪ Xk; for k + 1 ≤ i ≤ p update the

index of Xi’s to Xi−1

14 PXQ
= {X1,X2, · · · ,Xp}

15 end

where p(XQ|s) =
∑

x∈XQ
p(x|s) and p(XQ) =

∑

x∈XQ
p(x).

Applying p(y|x), the value of maxy∈Y ω(y) as the upper

bound on privacy leakage after randomization is given by [10]

max
y∈Y

ω(y) = max{max
y∈Xε

ω(y), ω(X c
ε )}. (5)

It is obvious that maxy∈Xε
ω(y) ≤ ε, so it attains the pri-

vacy constraint. However, the value of ω(X c
ε ) is variable and

depends on the joint probability distribution.

Example 1 Let X = {x1, x2, · · · , x5}, S = {s1, s2, s3},
and ε = 0.8. We randomly generate a joint distribution

p(s, x) and the resulting maximum symbol-wise leakage and

utility are ω(x) = [1.3515, 1.6458, 0.9295, 0.8161, 0.2608]
and H(X) = 1.6034, respectively. For the given ε, the low-

risk and high-risk subsets are given by Xε = {x5} and X c
ε =

{x1, x2, x3, x4}, respectively. After randomization, assume

high-risk symbols are mapped to y∗ where y∗ = y1 = x1

and y2 = x5, then the maximum symbol-wise leakage and

utility are given by ω(y) = [0.0627, 0.2608] and I(X ;Y ) =
0.5269, respectively.

In Example 1, the leakage in the high-risk subset after

randomization is ω(X c
ε ) = 0.0627, which is an order of mag-

nitude smaller than the original privacy constraint ε = 0.8,

based on which X c
ε was obtained. Although this small leak-

age guarantees a very high level of privacy, it damages util-

ity drastically, the utility decreases from H(X) = 1.6034 to

I(X ;Y ) = 0.5269. On the other hand, when a threshold ε is

given as the privacy constraint, it is acceptable to just keep the

privacy leakage less than ε, even if it becomes very close to
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Fig. 1: Privacy leakage for different values of ε: The mean

values of maxy∈X c
ε
ω(y) are shown with standard deviation.

Algorithm 1 increases privacy leakage in X c
ε in comparison

with complete merging, however, in all cases it is still below

the constraint ε.

this threshold. Thus, in the next section, we propose a subset

merging method to enhance utility where the privacy leakage

increases, but remains under ε to the extent possible.

3. ENHANCING UTILITY

In this section, we introduce an approach to enhance utility

while maintaining a set privacy constraint. We measure utility

by mutual information which for the bi-partition {Xε,X
c
ε }

and complete merging randomization X c
ε is given by [10]

I(X ;Y ) = H(X) +
∑

x∈X c
ε

p(x) log
p(x)

p (X c
ε )

. (6)

Clearly, the utility depends on p(x) for x ∈ X c
ε and the over-

all p(X c
ε ). Our proposed approach to enhance data utility is

through increasing data resolution. That is, we propose to

randomize subsets of X c
ε separately rather than the complete

merging of the whole set X c
ε .

Let [p] = {1, 2, · · · , p} and consider a bi-partition

{Xε,X
c
ε }, a further partitioning of elements inX c

ε denoted by

PX c
ε
= {X1, · · · ,Xp}, and complete merging randomizations

Ri(y), i ∈ [p] where
∑

y∈Xi
Ri(y) = 1. In other words, we

partition X c
ε to subsets Xi, so X c

ε = ∪pi=1Xi and each subset

Xi is randomized by the corresponding randomization Ri(y).
Note that for y ∈ Xi we have p(y) =

∑

x∈Xi
p(y|x)p(x) =

p(Xi)Ri(y). The resulting mutual information I(X ;Y ) is

I(X ;Y ) = H(X) +

p
∑

i=1

∑

x∈Xi

p(x) log
p(x)

p (Xi)
. (7)

Then the normalized mutual information-loss for partition

PX c
ε

on X c
ε is defined as

NMIL(PX c
ε
) =

H(X)− I(X ;Y )

H(X)
. (8)

Since p(Xi) ≤ p(X c
ε ) for i ∈ [p] the data resolution increases

for each x ∈ Xi and this can results in a larger mutual infor-

mation and hence a lower utility loss. The following defini-

tion and derivations formalize this observation.

Definition 1 Assume two partitions PX c
ε

= {X1, · · · ,Xp}

and P
′

X c
ε
= {X

′

1, · · · ,X
′

p′}. We say P
′

X c
ε

is a refinement of

PX c
ε

and PX c
ε

is an aggregation of P
′

X c
ε

[13], if for every i ∈

[p], Xi = ∪j∈Ji
X

′

j where Ji ⊆ [p′], and we have p(Xi) =
∑

j∈Ji
p(X

′

j ).

If P
′

X c
ε

is a refinement of PX c
ε

and PX c
ε

is an aggregation of

P
′

X c
ε

then NMIL(P
′

X c
ε
) ≤ NMIL(PX c

ε
). This is because

H(X)× NMIL(PX c
ε
) =

p
∑

i=1

∑

x∈Xi

p(x) log
p(Xi)

p(x)
(9)

≥

p′

∑

i=1

∑

x∈Xj

p(x) log
p(Xj)

p(x)
= H(X)× NMIL(P ′

X c
ε
).

Generally, finding an optimal partition PX c
ε

that maxi-

mizes utility while maintaining the privacy constraint is com-

binatorial since it depends on the high-risk symbol proba-

bilities p(x), x ∈ X c
ε and the joint probability distribution.

However, we can use ε as a stop criteria to make a heuristic

agglomerative algorithm for obtaining a refinement of X c
ε to

enhance utility as much as possible.

3.1. A greedy algorithm to refine the high-risk subset X c
ε

Knowing that the aggregation of the partition of X c
ε reduces

the symbol resolution and data utility, we propose a heuristic

greedy algorithm that determines the most refined partition

of X c
ε that satisfies the data privacy constraint specified by

ǫ. This is a bottom-up algorithm, which bootstraps from the

most refined (singleton-element) partition of X c
ε . This start-

ing point provides the highest resolution/utility but results in

a lowest data privacy level. We let the subsets in the singleton

partition merge with each other to reduce the log-lift measure

ω(Xi),Xi ∈ PX c
ε

until the log-lift of all subsets is reduced

below ǫ. To achieve a low complexity, but effective procedure

that results in a finer partition of X c
ε , we implement the subset

merging in order. A good candidate to begin with is the most

challenging symbol with the highest log-lift leakage.

The pseudo-code of our method is shown in Algo-

rithm 1. To find each subset Xi ⊆ X c
ε , we start with

argmaxx∈X c
ε
ω(x) as the symbol with the highest risk in

X c
ε (line 4) and then to make the leakage of the subset ω(Xi)

less than ε we merge another symbol to it that minimizes

ω(Xi) in each iteration (lines 5-8). Each symbol that is added

toXi is removed fromX c
ε (line 7). When a subset Xi is made,

we add it to the partition set PX c
ε

and repeat the same process

for the remaining x ∈ X c
ε . After making all subsets, there is
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Fig. 2: Normalized Utility loss (NMIL) for different values

of ε: The mean values of NMIL are shown with standard de-

viation. Algorithm 1 reduces NMIL in comparison with com-

plete merging.

a possibility that for the last subset Xp the leakage is greater

than ε. That is, ω(Xp) > ε. If this happens, while ω(Xp) > ε

we make an agglomerate Xp by merging a subset to it that

minimizes ω(Xp) (lines 11-15). A complete merging is a

special output of our algorithm if no better finer partition can

be found that maintains the privacy.

4. EXPERIMENTS

To make a comparison between Algorithm 1 and complete

merging, we randomly generated 1000 joint distributions

p(s, x) where |X | = 20 and |S| = 13. For each distribution,

after randomization we obtained maximum privacy leak-

age of high-risk symbols maxy∈X c
ε
ω(y), maximum overall

privacy leakage maxy∈Y ω(y), and the utility loss NMIL

under Algorithm 1 and complete merging for different val-

ues of ε ∈ {0.25, 0.5, 0.75, · · · , 2.25, 2.5}. Then for each

ε, we derived the mean value and standard deviation of

maxy∈X c
ε
ω(y), maxy ω(y), and NMIL across these 1000

observations.

In Fig. 1 the mean value of maxy∈X c
ε
ω(y) is depicted

for each ε, as well as its standard deviation (shown as toler-

ance bars). As expected, complete merging makes a strong

guarantee on privacy leakage and keeps both mean and stan-

dard deviation much less than ε in all cases. In contrast, algo-

rithm 1 increases the privacy leakage and lets it be closer to

ε compared to complete merging, but crucially it still keeps

the mean value and the corresponding deviation less than ε

in all cases. As the value of ε increases, the standard devia-

tion is also increased. This is because when ε increases, the

privacy constraint is less strict and consequently the size of

X c
ε decreases. As a result, the sample size to calculate the

mean value of privacy leakage reduces, which causes a larger

deviation.

Fig. 2 shows the normalized mutual information loss un-

der Algorithm 1 and complete merging. It demonstrates that
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Fig. 3: Privacy Utility trade-off: For each value of ε, algo-

rithm 1 reduces NMIL substantially while maintain privacy

leakage below ε.

Algorithm 1 enhances utility substantially for each value of ε.

Finally, to have a clear privacy-utility trade-off (PUT)

comparison, we present PUT curves for both Algorithm 1

and complete merging in Fig. 3. For each ε, the mean value

of overall privacy leakage maxy∈Y ω(y) is shown versus

the corresponding mean value of NMIL. Clearly, Algorithm

1 enhances utility significantly while satisfying the privacy

leakage constraint. For a very strict constraint on privacy

(ε ≤ 0.5), complete merging results in perfect privacy with

total utility loss where NMIL = 1. However, Algorithm 1
keeps the average utility loss less than 1.

5. CONCLUSION

In this paper, we introduced a method to enhance utility in

the watchdog privacy mechanism. We showed that it is pos-

sible to maintain the privacy constraint and improve utility.

In our approach, instead of randomizing the whole high-risk

partition, we randomized subsets of high-risk symbols sepa-

rately. Then we proposed a heuristic greedy algorithm to find

subsets of high-risk elements and at the same time keep the

leakage of each subset less than the privacy constraint, ε. The

simulation results showed substantial utility enhancement and

preservation of the privacy constraint.

In future research, it would be interesting to consider how

to develop more efficient subset merging algorithms. Inves-

tigation of effective parameters like subset size and different

privacy and utility measures could be helpful. It would be also

beneficial to apply the proposed algorithm to real world data

sets and measure actual practical utility. It would be also ben-

eficial to apply the proposed algorithm to real world datasets

and measure the obtained utility.
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