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ABSTRACT

Although previous CNN based face anti-spoofing methods
have achieved promising performance under intra-dataset
testing, they suffer from poor generalization under cross-
dataset testing. The main reason is that they learn the net-
work with only binary supervision, which may learn arbitrary
cues overfitting on the training dataset. To make the learned
feature explainable and more generalizable, some researchers
introduce facial depth and reflection map as the auxiliary su-
pervision. However, many other generalizable cues are unex-
plored for face anti-spoofing, which limits their performance
under cross-dataset testing. To this end, we propose a novel
framework to learn multiple explainable and generalizable
cues (MEGC) for face anti-spoofing. Specifically, inspired
by the process of human decision, four mainly used cues by
humans are introduced as auxiliary supervision including the
boundary of spoof medium, moiré pattern, reflection artifacts
and facial depth in addition to the binary supervision. To
avoid extra labelling cost, corresponding synthetic methods
are proposed to generate these auxiliary supervision maps.
Extensive experiments on public datasets validate the effec-
tiveness of these cues, and state-of-the-art performances are
achieved by our proposed method.

Index Terms— Face Anti-spoofing, Explainable Cue
Learning, Generalizable Cue Learning

1. INTRODUCTION

Currently, face anti-spoofing has become a crucial part to
guarantee the security of face recognition systems and drawn
increasing attention in the face recognition community. Pre-
vious methods mainly extract handcrafted features such
as color [1], texture and distortion cues [2] for face anti-
spoofing. However these methods are vulnerable to illumina-
tion variations and scene changes.

As deep learning has proven to be effective in many
computer vision problems, many researchers turn to employ
CNNs to extract more discriminative features [3–5], and show
significant improvement over the conventional ones. These
methods treat face anti-spoofing as a binary classification
∗Equal contribution.
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Fig. 1. Face anti-spoofing can be regarded as a binary classifi-
cation (live or spoofing) problem, which relies on the intrinsic
cues such as depth, reflection, boundary and moiré pattern.

problem and train the network with only softmax loss. A
CNN with binary supervision might discover arbitrary cues
to separate the two classes without explanation, which causes
overfitting on the training dataset. When the learned cues
change or even disappear during testing, these models would
fail to distinguish spoof vs. live faces and achieve poor gener-
alization performance under cross-dataset testing. Therefore,
it is desirable to learn explainable and generalizable cues for
face anti-spoofing.

To achieve this goal, Liu et al. [6] regard live faces have
face-like depth, while faces in print or replay attacks have flat
or planar depth. Therefore they utilize depth as auxiliary in-
formation to supervise both live and spoof faces. Considering
light rays that are reflected from a surface of spoof medium
may cause the reflection artifacts in recaptured images, the re-
flection map [7] is used as additional auxiliary supervision for
more robust feature learning. However, only limited cues are
leveraged in these approaches, and many other generalizable
cues (such as moiré pattern, boundary of spoof medium, etc.)
are discarded for face anti-spoofing, which limits their per-
formance under cross-dataset testing. Therefore, more gen-
eralizable cues are desirable to be explored to improve the
robustness under severe variations.

When a human is distinguishing spoof vs. live faces, the
following four main artifacts are usually leveraged. Firstly,
the boundary of the spoof medium, such as the screen border
of the phone and computer, or the boundary of the printed
photographs is easily spotted. Secondly, there exists obvious
moiré pattern under replay-attack due to the aliasing caused
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by different frequencies of capture devices. Thirdly, reflection
artifacts may be caused by the reflection from a surface of
spoof medium. Finally, facial depth difference between live
and spoofing faces is also a cue as most spoofing faces are
broadcasted in plane presentation attack instruments.

Inspired by the way humans distinguish spoof vs. live
faces, we propose a novel framework to learn multiple
explainable and generalizable cues for face anti-spoofing.
Specifically, the network is trained end-to-end with boundary
of spoof medium, moiré pattern, reflection artifacts and facial
depth as auxiliary supervision in addition to the binary su-
pervision. These extracted cues are visualized in Fig.1. Due
to the expensive cost for labelling these cues, we propose
synthetic methods to generate the corresponding maps.

2. PROPOSED METHOD

In order to learn the proposed explainable and generalizable
cues for face anti-spoofing, we need to get the auxiliary su-
pervision maps including the ones of the boundary of spoof
medium, moiré pattern, reflection artifacts and facial depth.
The reflection and depth maps are extracted as [7], while the
boundary and moiré maps are generated using our proposed
synthetic methods. In the section, we first introduce the meth-
ods to generate the boundary and moiré maps, and then elab-
orate the proposed MEGC framework as illustrated in Fig.2.

2.1. Extracting Moiré Map

When a fine pattern on the subject meshes with the pattern
on the imaging chip of the shooting camera, the moiré pattern
occurs. It is inevitable to get moiré pattern in the relay-attack,
since a screen is the subject photographed. Therefore, moiré
pattern is a strong generalizable cue under relay-attack.

Directly labelling the moiré pattern is intractable, we need
algorithms to extract it automatically. At present, there is no
model to directly estimate the moiré map of an input image.
As the process of generating moiré pattern is known, we can
use different interference fringes with similar frequency to
generate moiré pattern physically, and add it into an image
without moiré pattern to get a corresponding pair of input im-
age and its moiré map. Another way is to leverage the existing
mature demoiréing methods to get an output image without
moiré pattern given the input image with moiré pattern. Then
subtracting the output image from the input image, we can ob-
tain the corresponding moiré map. However the first method
only uses the live images without moiré pattern and discards
the various spoofing images with moiré pattern, which limits
its performance. While the second method focuses on remov-
ing the moiré pattern to make the output image have no moiré
pattern visually, which often leads to the residual image con-
tains some image content due to over-removing as shown in
Fig.3 (c). This noising moiré map hinders the feature learning
and leads to performance degradation.

In order to solve this problem, we propose a network to es-
timate the moiré map of an input image as shown in Fig.4. In
the training phase, we use the above mentioned first method to
get corresponding pairs of input images and their moiré maps.
The images are as input for the network, and the correspond-
ing moiré maps are as supervision. To reduce the difficulty of
learning, the final moiré map learning is based on the above
mentioned second method. That is, we first use the image
demoiréing method to get the residual image and then refine
it to get the final moiré map. The image demoiréing part is
based on the SOTA demoiréing method MRGAN [8]. We use
a trained MRGAN model [8] to initialize the parameters of
the upper half branch of our network and its parameters are
fixed during training, while it is followed by two learnable
3*3 convolution layers for adaptation. The image demoiréing
part is also followed by two 3×3 convolution layers to refine
the moiré map. During testing, we use the trained network
to extract the moiré maps of replay-attack images which are
used as moiré cues to train the network in our MEGC frame-
work. Moiré maps are set to all zeros for live faces, and we
don’t perform gradient back prorogation on spoofing samples
which don’t belong to replay spoofing types when training the
auxiliary moiré part in our MEGC framework.

2.2. Generating Boundary Map

During recapturing, the boundary of the spoof medium, such
as the screen border of the phone and computer, or the bound-
ary of the printed photograph is often captured by the camera
due to the larger field of view. Therefore, the boundary of
the spoof medium is another strong generalizable cue for face
anti-spoofing.

To label the boundary is labor-consuming, we propose a
synthetic method to generate pairs of spoofing images with
boundaries and their corresponding boundary maps. Firstly,
we randomly select a live sample and a spoofing sample.
Then the face in the spoofing sample is cut out and pasted
to the live sample to replace the live face. In this way, we
can get spoofing samples with known boundaries as shown
in Fig.3 (e). To generate the corresponding boundary map,
the values inside the boundary are set to one, the ones outside
the boundary are set to zero as shown in Fig.1. As for live
faces, boundary maps are set to all zeros. This boundary map
will act as an auxiliary supervision to help the network in
our MEGC framework to learn the boundary cues. For the
original spoofing images, as we don’t know their boundary
information, these samples are not used to train the boundary
part of the network.

2.3. MEGC Framework

The proposed MEGC framework consists of four main mod-
ules, i.e., common feature extraction (backbone network),
multi-auxiliary feature extraction (MAFE), multi-feature en-
richment (MFE), and classifier as shown in Fig.2. To make a
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Fig. 2. The architecture of our MEGC framework. Individual numbers indicate the channel numbers of feature maps.

(a) (b) (c) (d) (e)

Fig. 3. (a) generated moiré pattern, (b) generated moiré im-
age, (c) the residual moiré map learned by demoiréing method
MRGAN [8], (d) moiré map estimated by our network, (e)
synthetic image with boundary.
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Fig. 4. The network architecture for moiré map extraction.

fair comparison with BASN [7], we use the same backbone
network and classifier as BASN. Feature maps of conv3,
conv4, conv5 from the backbone network are resized to the
fixed size of 64×64, and are then concatenated to be passed to
the MAFE. Feature maps of conv3, conv4, conv5, and conv6
of are resized to the size of 16×16 and are concatenated to be
passed to the MFE.

Multi-auxiliary Feature Extractor. MAFE consists of
four auxiliary feature extractors, including depth feature ex-
tractor, reflection feature extractor, moiré feature extractor

and boundary feature extractor. The depth and reflection fea-
ture extractors are the same as the ones in BASN [7]. As for
the moiré and boundary feature extractors, we get the ground
truth maps using the methods proposed in section 2.1 and 2.2
respectively with size of 32×32. Given an input face image I,
the MAFE predicts the depth map Dpre, reflection map Rpre,
moiré map Mpre and boundary map Bpre. The loss functions
can be formulated as:

LD =
1

N

∑
i∈N

||Dpre(i)−Dgt(i)||22 (1)

LR =
1

N

∑
i∈N

||Rpre(i)−Rgt(i)||22 (2)

LM =
1

N

∑
i∈N

||Mpre(i)−Mgt(i)||22 (3)

LB =
1

N

∑
i∈N

||Bpre(i)−Bgt(i)||22 (4)

where, Dgt, Rgt, Mgt and Bgt denote ground truth depth
map, reflection map, moiré map and boundary map respec-
tively. N is the batch size. Finally, the overall loss function is
Loverall = µ ∗ Lcls + λ ∗ (LD + LR + LB + LM ), where µ
and λ denote the weight of each loss functions.

Multi-feature Enrichment. MFE enriches the feature
representations by fusing feature maps from MAFE and the
backbone network. Finally, the fused feature map will go
through the binary classifier. Different from BASN [7], we
first fuse the reflection, moiré and boundary features from
MAFE as the spoofing feature map. Then the spoofing fea-
ture map is subtracted from the depth feature map.



3. EXPERIMENTS

3.1. Experimental Setup

Datasets. Two public face anti-spoofing datasets are utilized
to evaluate the effectiveness of our method: Replay-Attack
[9] (denoted as R) and CASIA-MFSD [10] (denoted as C).
We select one dataset as source domain for training and the
remaining one as target domain for cross-testing. Thus, we
have two cross-testing tasks in total. Following [11], the Half
Total Error Rate (HTER) is used as the evaluation metric.

Implementation Details. The size of face image is
256×256×6 with both the RGB and HSV channels. The face
boxes are detected with open source toolbox Dlib. To expose
the boundary, the face boxes are expanded by 1 times in size.
Other hyperparameters µ, λ are set to 10, 0.1 respectively.
For every training epoch, the ratio of positive and negative
images is 1:1.

3.2. Ablation Study

To verify the effectiveness of the learned spoofing cues, we
discard one of the spoofing cues in turn to get our meth-
ods without reflection, moiré and boundary cues, which are
denoted as Ours wo/R, Ours wo/M and Ours wo/B respec-
tively. The results of Tab.1 show that the performances of
these methods decrease in different degrees which validates
the effectiveness of each one of the proposed spoofing cues.
It is also worth noting that different cues have different im-
pact on different datasets. The performance of Ours wo/M is
the worst on the Replay-Attack which shows the moiré cue is
the most robust cue for Replay-Attack. Similarly, we can get
the boundary cue is the most robust cue for CASIA-MFSD.
Therefore, learning multiple generalizable cues can improve
the robustness of the model under cross-testing.

To verify the effectiveness of our moiré extracting method,
we compare our method with the two mentioned extracting
methods in subsection 2.1. The first one adds synthetic moiré
(as shown in Fig.3 (a)) into the live images to get the train-
ing images with moiré, which is denoted as Ours w/moiré1.
The second one leverages the demoiréing method to get the
residual moiré map , which is denoted as Ours w/moiré2.
The results of Tab.1 show the effectiveness of our proposed
moiré extracting method. Ours w/moiré1 discards the real
spoofing images with moiré pattern, while the residual moiré
map learned by Ours w/moiré2 contains some image content
as shown in Fig.3 (c), which hinders their performances. Our
method can learn clean moiré map as shown in Fig.3 (d).

3.3. Comparison with State-of-the-Art Methods

In this subsection, we compare the proposed MEGC with pre-
vious state-of-the-art methods. The competitive approaches
include LBP-TOP [12], Spectral cubes [13], LBP [14], Color
Texture [1], CNN [3], STASN [15], FaceDe-S [16], Auxiliary

Table 1. Ablation study on cross-dataset testing.

Methods Train Test Train Test
C R R C

Ours 20.2 27.9
Ours wo/R 25.7 35.2

Ours wo/M 29.0 34.1

Ours wo/B 23.7 37.2

Ours w/moiré1 27.9 39.6

Ours w/moiré2 30.8 39.8

Table 2. Comparison to SOTA methods.

Methods Train Test Train Test
C R R C

LBPTOP [12] 49.7 60.6

Spectral cubes [13] 34.4 50.0

LBP [14] 47.0 39.6

Color Texture [1] 30.3 37.7

CNN [3] 48.5 45.5

STASN [15] 31.5 30.9

FaceDe-S [16] 28.5 41.1

Auxiliary [6] 27.6 28.4
BASN [7] 23.6 29.9

BCN [17] 16.6 36.4

Ours 20.2 27.9

[6], BASN [7], BCN [17]. As shown in Tab.2, the bold type
indicates the best performance, and the under-line type indi-
cates the second best performance. Our method outperforms
the baseline method BASN [7], which verifies the effective-
ness of the two extra introduced cues: moiré and boundary.
Our approach achieves the best overall performance, which
verifies the effectiveness of proposed multiple generalizable
cues learning. It is notable that our method is slightly worse
than BCN [17] on the Replay-Attack. However, BCN uses
more sophisticated network and introduces other cues, such
as surface texture cues. These cues are compatible with our
method, and combination of them can further improve the
performance. We leave it in the future work.

4. CONCLUSION

In this paper, we propose a novel framework to learn multi-
ple explainable and generalizable cues for face anti-spoofing.
Moiré pattern and boundary of spoof medium are introduced
to improve the generalization capacity. Two synthetic meth-
ods are proposed to generate the corresponding maps to avoid
the expensive cost for labelling. Extensive experiments show
the effectiveness of these cues, and state-of-the-art perfor-
mances are achieved.
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