
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A LOW-PARAMETRIC MODEL FOR BIT-RATE ESTIMATION OF VVC RESIDUAL CODING

Fabian Brand, Christian Herglotz, André Kaup

Multimedia Communications and Signal Processing, Friedrich-Alexander-Universität Erlangen-Nürnberg

ABSTRACT

There are many tasks within video compression which re-
quire fast bit rate estimation. As an example, rate-control
algorithms are only feasible because it is possible to esti-
mate the required bit rate without needing to encode the en-
tire block. With residual coding technology becoming more
and more sophisticated, the corresponding bit rate models re-
quire more advanced features. In this work, we propose a
set of four features together with a linear model, which is
able to estimate the rate of arbitrary residual blocks which
were compressed using the VVC standard. Our method out-
performs other methods which were used for the same task
both in terms of mean absolute error and mean relative error.
Our model deviates by less than 4 bit on average over a large
dataset of natural images.

Index Terms— Versatile Video Coding, Rate Model,
Rate Control

1. INTRODUCTION

Bit rate estimation is a common problem in image and video
compression. There are multiple tasks in a video coder where
knowledge of the resulting bit rate is beneficial. This in-
cludes for example rate-control [1], where the encoder has
to match a specified rate at the output. Here, the encoder
has to know the resulting rate of a coding decision in or-
der to accurately choose the coding parameters for optimal
rate-distortion behavior, a process which is known as rate-
distortion-optimization [2, 3]. One possibility to obtain the
rate needed for a certain decision is to perform the compres-
sion until the end and measure the rate directly. While this is
certainly the most accurate method, following the coder to the
end is often time-consuming, when performed too often. In
such cases, a robust, simple and accurate rate model is useful
to estimate the required rate.

One example where the rate has to be estimated multiple
times is rate-distortion optimized quantization (RDOQ) [4, 5,
6]. Here the quantized values themselves are subject to rate-
distortion optimization. For each tested configuration, both
rate and distortion have to be evaluated. Another application
targets video formats with irrelevant content. For example,
some projection formats in 360◦ video coding map the con-
tent to a 2D plane, where parts of the sequence are irrelevant
for the reconstruction of the 360◦ content [7]. Similar regions
can be found in videos generated for video-based point cloud

compression [8]. In such sequences, several blocks may con-
tain both relevant as well as irrelevant pixels, where the ex-
act pixel values in the irrelevant region are of no importance.
Depending on the number of irrelevant pixels, this can lead
to a manifold of optimal representations in the DCT domain,
where the best representation must be determined for optimal
rate savings. Using a simple rate model as proposed in this
paper instead of performing the arithmetic encoding chain for
all DCT representations will decrease the encoding time sig-
nificantly.

Coding of frequency coefficients has become more so-
phisticated with ongoing standard development. While JPEG
only uses run-level coding to encode the values [9], VVC uses
multiple coding passes and can therefore exploit the sparsity
of images in the frequency domain, in particular in high fre-
quency areas. Additionally, VVC uses context adaptive bi-
nary arithmetic coding (CABAC) [10], which is able to take
the previously coded signals into account to improve com-
pression efficiency. So in the end, the required rate for one
residual block follows more complicated relationships and is
not even deterministic, since different contexts in CABAC can
yield different rates for the same residual signal.

In this work, we limit ourselves to models which estimate
the rate needed to transmit a transformed and quantized resid-
ual block in VVC. Our goal is to design a rate model, which
only uses the quantized frequency coefficients and which is
valid for all block-sizes. In the following, we first introduce
our model and the features on which it is based. We then com-
pare our model against other methods performing a similar
task and perform ablation studies demonstrating the impact
of the individual features. In the end, we show the versatility
and robustness of our model in various experiments.

2. RELATED WORK

Rate models were often examined in the context of rate-
control. This field was dominated for a long time by ρ-
domain models [11, 12]. Here, a linear relationship between
the number of non-zero frequency coefficients and the rate
is assumed. In these models, the proportionality factor is
often not constant for all contents but rather determined dy-
namically based on various image and video properties, like
texture or previously coded pictures [12].

Another class of rate-control models are the so-called λ-
domain models [13, 14]. These models assume a usually ex-
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ponential relationship between the rate and the Lagrangian
factor λ of the rate-distortion optimization. As for the ρ-
domain model, the parameters of the model are often esti-
mated using various image properties.

Recently, learning-based methods for the use in video
coding have been proposed. These methods often tackle
prediction problems, such as [15] which proposes a deep-
learning-based intra-prediction method for use in VVC. Also,
VVC includes Matrix Intra Prediction (MIP) [16], which in-
cludes a trained matrix. These methods generate prediction
signals which are optimal if the residual can be compressed
well. These methods therefore require a loss function which
accurately estimates the rate of a residual block. Here, it is
desirable to have fixed model parameters unlike the ρ- and
λ-domain models, that do not depend on other image char-
acteristics. One such model was proposed in [17] which was
also used to train MIP.

3. RATE ESTIMATION MODEL

The rate estimation model we propose in this work consists of
four features and a bias, which form a linear model with five
parameters. We chose a linear model due to its low complex-
ity and simplicity in training. With only five parameters, we
expect the model to be robust against overfitting and to gener-
alize well. The features are hand-crafted and inspired by the
process of residual coding in VTM. The features are all com-
puted on sub-block level, meaning, each block is divided into
4 × 4 sub-blocks before feature computation. The feature of
the block B itself is then the sum of the features of all sub-
blocks. This design concept grants us the possibility to find a
model which is valid for all block-sizes. In the following, the
set of all coefficients c in a sub-block is denoted as S.

As first feature we choose to use the number of non-zero
coefficients after quantization. This feature is similar to the
parameter of the ρ-domain model. The motivation of the fea-
ture is that in the beginning of the compression scheme, non-
zero coefficients are signaled and all subsequent bits are only
required for there so-called significant coefficients. This has
been proven a good feature in the past, in particular in the ρ-
domain model. In the following, this feature is denoted as S.
We can express this feature as

S =
∑
S∈B

∑
c∈S

{
0 if c 6= 0

1 else
. (1)

As second feature we use the sum of the binary loga-
rithm of all significant coefficients. This feature estimates
how much rate has to be spent to transmit each value. We
denote this feature as L with:

L =
∑
S∈B

∑
c∈S

max(0, log2 |c|). (2)

The next two features describe the positions and distri-
butions of the coefficients on sub-block-level. For each sub-

block, we perform a zig-zag scan and look at the last coeffi-
cient which is greater than zero. We then use the position of
that coefficient as sub-block feature and sum up all the po-
sitions for the block feature. We denote this third feature as
Z.

The fourth feature measures the percentage of coefficients
in the sub-block which are strictly greater than 1 and com-
putes the binary entropy function of the percentage:

E =
∑
S∈B

H2

(
C1(S)
16

)
, (3)

where H2(p) = −p log2(p) − (1−p) log2(1−p) is the bi-
nary entropy function and Cn(S) is a function counting all
coefficients with values greater than n in the sub-block S. In
practice, this can easily be realized with a lookup table.

Altogether, we use the four features in a linear model for
rate estimation:

Rest = a · S + b · L+ c · Z + d · E + e, (4)

with trainable parameters a, b, c, d, and e, the latter of which
is a global offset.

4. EXPERIMENTS
4.1. Setup

To evaluate our model, we compare it with two different mod-
els which are both estimating the rate based on transformed
blocks. First, we use the ρ-domain model from [11]. The ρ-
domain model assumes a linear relationship between the per-
centage of non-zero quantized coefficients (1−ρ) and the rate.
Since this model was proposed for usage in MPEG-4, where
all transform blocks were of size 4×4 and therefore constant,
the model does not take the size of the block into account. We
instead use the absolute number of non-zero coefficients as a
feature.

Also, we use the model which was suggested in [17] as
loss function to train intra prediction networks for MIP [16].
Since this model was initially proposed as a loss function for
a neural network, a linear relationship to the actual rate was
sufficient. In our case, however, we require an exact estimate.
We therefore extended the model by two parameters, such that
the rate for one block is now estimated by

Rest =
∑
(m,n)

α |cm,n|+ βg (γ |cm,n|+ δ) + ε, (5)

with the logistic function g(·). We therefore call this model
the logistic model. At this point we want to note that this
model, was designed as differentiable model and therefore
does not use features based on thresholding, counting, or po-
sitions.

For our experiments we encoded 30 picture from the
DIV2K dataset [18] using VTM 10.0 [19] and QPs of 22,
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ρ domain [11] Logistic [17] Sub-Block Model (Ours)
QPt QPe P MAE MRE time P MAE MRE time P MAE MRE time
22 22 0.9752 12.3 17.1% 0.003 0.9959 6.91 12.7% 0.002 0.9978 4.78 9.1% 0.009
27 27 0.9845 8.0 17.2% 0.003 0.9936 6.10 15.2% 0.003 0.9970 4.02 10.1% 0.009
32 32 0.9898 5.96 17.5% 0.003 0.9941 4.12 15.7% 0.003 0.9970 3.45 12.7% 0.009
37 37 0.9874 4.55 17.0% 0.003 0.9902 5.33 16.5% 0.004 0.9954 2.98 14.3% 0.009

22 27 0.9830 8.42 17.7% - 0.9947 5.48 14.6% - 0.9967 4.07 10.9% -
32 0.9905 6.70 18.8% - 0.9928 4.01 16.1% - 0.9967 3.52 12.5% -

37 27 0.9849 8.9 18.1% - 0.9898 7.76 16.1% - 0.9968 4.60 11.6% -
32 0.9904 6.01 17.9% - 0.9905 5.84 16.1% - 0.9969 3.57 12.3% -

Table 1. Results of the rate estimation experiments. QPt denotes the QP which was used for training, QPe denotes the QP
which was used for evaluation. The time is given in ms per block.
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Fig. 1. Estimation curve for our proposed rate model.

27, 32 and 37. This yields between 450,000 and 1,100,000
blocks per QP. We then perform a 5-fold cross validation and
average the metrics. We train each model to minimize the
mean squared error (MSE). For the ρ-domain model and our
proposed method, we can use the pseudo-inverse for esti-
mation, while the non-linear logistic model is trained using
gradient descent.

To evaluate the results, we use the Pearson correlation co-
efficient

P =
σR,Rest

σRσRest

, (6)

where σR,Rest
denotes the covariance of R and Rest. We fur-

thermore evaluate the mean absolute error MAE

MAE =
1

N

N∑
i=1

∣∣Ri −Rest,i

∣∣ (7)

and the mean relative error MRE.

MRE =
1

N

N∑
i=1

∣∣Ri −Rest,i

∣∣
Ri

, (8)

where Ri and Rest,i denote the ith sample in the test set and
N is the total number of tested blocks.

4.2. Rate Estimation

In a first experiment, we compare the three models for each
QP separately. In the 5-fold cross validation, both training set

Feature Set P MAE MRE
S 0.9791 12.34 17.2%
L 0.8995 33.03 48.36%
Z 0.9242 20.69 27.1%
E 0.9361 25.02 45.8%
S + L 0.9976 5.70 11.8%
S + Z 0.9820 12.38 18.8%
S + E 0.9844 10.32 16.7%
L+ Z 0.9934 7.67 14.9%
L+ E 0.95 19.92 36.8%
Z + E 0.9710 15.11 26.7%
S + L+ Z 0.9977 5.3 11.2%
S + L+ E 0.9975 5.34 10.9%
S + Z + E 0.9878 10.40 16.6%
Z + L+ E 0.9948 6.76 13.6%
S + Z + L+ E 0.9978 4.93 10.5%

Table 2. Results of the ablation studies.

and test set were compressed with the same QP. We show the
results evaluated on the test sets in Tab. 1.

From this result we see that the ρ-domain model, even
though it is a very simple model, still performs relatively
well. This indicates that the number of non-zero coefficients
is a good indicator and also works well if the parameters are
trained on general images and not on specific blocks.

The sigmoid model, which is a more complex model and
takes the magnitude of the coefficients into account, performs
better with a mean relative error of 12.1% for QP 22 and
19.5% for QP 37. The rise of the MRE with the QP indicates
that the model does not perform well for small rates, since the
rate average rate decreases with QP.

Our proposed sub-block model performs better than the
other two models in all metrics. Throughout all QPs, we
achieve a correlation coefficient of R > 0.995 and the rel-
ative error—even though it is also increasing with the QP—is
between 2 and 5 percentage points below the MRE of the sig-
moid model. Fig. 1 shows the measured bit rate against the
estimated rate. The points are color coded according to the
total number of pixels of that block. We see that our model
is able to produce accurate results over all rates. The red line
indicates the case of perfect estimation.

To compare the complexity of our methods, we conducted
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Fig. 2. Estimation curves for different feature combinations.

time measurements in our MATLAB implementation. Here,
we see that our method takes about 3 times longer than the
others. Note, that the runtime may vary in different imple-
mentations. The measurements show that our method is in a
similar range than the others with several µs per block.

To demonstrate the versatility of our model, we addition-
ally perform a cross QP test. For this test, we train the models
on images which were coded with QPt ∈ {22, 37} and eval-
uate on images which were coded with QPe ∈ {27, 32}. The
results show that all three methods are relatively robust to the
QP of the training data. In most cases, we can observe a small
degradation when we train with deviating QPs, however, this
is always less than 2% in MRE. On the other hand, we also
see a few cases where the results are better. Slight deviations
are expected since data may randomly produce a better fit. As
expected, however, on average the quality degrades with a QP
mismatch. In the end, our proposed method still outperforms
the other methods in all metrics also in this case.

4.3. Ablation Study
Additionally, we perform ablation studies to demonstrate the
descriptive power of each feature. The following experiments
were performed with a QP of 22. The results in Tab. 2 clearly
show that the individual features are not well suited to esti-
mate the rate. The best individual feature is the number of
non-zero coefficients S, which is equivalent to the ρ-domain
model. In the table, we can see that especially L and E per-
form poorly by themselves. In Fig. 2, we show the results of
a selection of cases to further illustrate the results.

We can see that S and Z severely underestimate the rate
for large rates and that the behavior is non-linear. This is due
to the fact that both features do not take the actual values of
the coefficients into account. On the other hand, the model

using only L leads to an overestimation for large rates. In
Tab. 2, we see that S + L and Z + L both give reasonably
good results as both effects cancel out and form a better linear
model. In Fig. 2 (e) and (f), we see show the effect of the en-
tropy based feature. This feature mainly influence the region
for medium bit rates. We can see here that in these ranges,
S + L + Z leads to a slight overestimation, which can be
fixed by taking the entropy-based feature into account. Note
that all ablation study experiments were performed without a
bias term. This also shows the importance of being able to
add a constant term, as it is responsible for the improvement
from 10.5% to 9.1% relative error.

5. CONCLUSION

In this paper, we proposed a novel set of features to esti-
mate the rate required to compress a transformed residual
block in VVC. Our model has only five parameters and can be
trained easily and stably due to its low complexity and linear-
ity. Other than in known approaches like λ-domain models,
we can find fixed parameters to model the rate for all blocks,
independent of the content.

In future work, the model accuracy could further be in-
creased by taking the CABAC context into account and in-
cluding it in the model. Since the context can change the
required rate, no model which does not include the context
can exceed a certain accuracy. Furthermore, the model can be
extended to other video compression standards and the effect
of our model in several scenarios, such as RDO, RDOQ or ir-
relevant region coding, both in compression performance and
in runtime can be evaluated. The model we presented in this
paper showed superior performance to other models, while
remaining simple and linear. Therefore, a speedup and good
performance can be expected in various applications.
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