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ABSTRACT

This paper improves the streaming transformer transducer for speech
recognition by using non-causal convolution. Many works apply
the causal convolution to improve streaming transformer ignoring
the lookahead context. We propose to use non-causal convolution
to process the center block and lookahead context separately. This
method leverages the lookahead context in convolution and main-
tains similar training and decoding efficiency. Given the similar
latency, using the non-causal convolution with lookahead context
gives better accuracy than causal convolution, especially for open-
domain dictation scenarios. Besides, this paper applies talking-head
attention and a novel history context compression scheme to further
improve the performance. The talking-head attention improves the
multi-head self-attention by transferring information among differ-
ent heads. The history context compression method introduces more
extended history context compactly. On our in-house data, the pro-
posed methods improve a small Emformer baseline with lookahead
context by relative WERR 5.1%, 14.5%, 8.4% on open-domain dic-
tation, assistant general scenarios, and assistant calling scenarios,
respectively.

Index Terms— Non-causal convolution, talking heads, aug-
mented memory

1. INTRODUCTION
Nowadays, sequence transducer networks [1, 2] are widely used for
streaming automatic speech recognition due to their superior per-
formance and compactness. A sequence transducer model has an
encoder to capture the context information from acoustic signals,
a predictor to model the grammar, syntactic, and semantic infor-
mation, and a joiner to combine the two parts. The work [3, 4]
showed replacing the LSTM encoder with the self-attention-based
transformer [5] yielded the state-of-the-art of accuracy on public
benchmark datasets, which is consistent to the trend in applying
transformer in various scenarios for automatic speech recognition [6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

A wide range of methods that have been proposed to improve
the transformer model. One popular variant of transformer mod-
els for speech recognition tasks is Conformer [15], which adds the
depth separable convolutions and macaron network structure [18]
into the transformer. The work [19, 20] simplified the depth-wise
convolution in conformer to causal convolution to support stream-
ing scenarios. In [17], the non-causal convolution is used to support
streaming speech recognition. However, sequential block process-
ing is required to avoid training and decoding inconsistency. The
sequential block processing segments the input sequences into mul-
tiple blocks. And the model is sequentially trained on each block.

? Equal contribution.

The sequential block process is slow in training for low latency sce-
narios and incapable of dealing with large-scale dataset.

The multi-head self-attention [5] in transformer uses different
heads that conduct the attention computation separately. The atten-
tion outputs are concatenated at the end. The work [21] proposed
a talking-heads attention method to break the separation among dif-
ferent heads by inserting two additional learnable lightweight linear
projections transferring information across these heads.

The Emformer [14] and the augmented memory transformer [16]
support streaming speech recognition by using block processing
where a whole utterance is segmented into multiple blocks. The
self-attention performs the computation on the current block and
its surrounding left context and lookahead context. An augmented
memory scheme is proposed to store the information from the previ-
ous blocks, which explicitly introduces compact long-form context
while maintains limited computation and runtime memory consump-
tion in inference. The attention output from the mean of the current
block is used as a memory slot for future blocks.

In this work, we advance the Emformer [14] model from the
following aspects. First, we leverage a similar architecture as con-
former but use non-causal convolution to support streaming. In com-
parison with [17], this work enables parallel block processing with
the non-causal convolution, achieving a similar training speed as the
baseline Emformer model. Second, the attention is replaced with
the talking-heads attention scheme. Third, we further simplify the
augmented memory extraction process similar to [22], referred to
as context compression: rather than using the self-attention output
from the mean of each block, we directly use the linear interpolation
of each block as memory. On a large-scale speech recognition task,
we evaluated this novel variant of the streaming transformer.

The rest of this paper is organized as follows. In Section 2, we
present the methods to advance the Emformer model. Section 3
demonstrates and analyzes the experimental results, followed by a
conclusion in Section 4.

2. METHODS TO ADVANCE EMFORMER
Fig. (1a) illustrates forward logic in one Emformer[14] layer. To
support streaming speech recognition, Emformer applies the paral-
lel block processing to segment a input sequence into multiple non-
overlapping blocks Cn

1 , · · · ,Cn
i−1, where i denotes the index of

current block, and n denotes the layer’s index. In order to reduce
boundary effect where the most right vector in Cn

i has no lookahead
context information, a right contextual block Rn

i , is concatenated
with Cn

i to form a contextual block Xn
i = [Cn

i ,R
n
i ]. At the i-th

block, the n-th Emformer layer takes Xn
i and a bank of memory

vector Mn
i as the input, and produces Xn+1

i = [Cn+1
i ,Rn+1

i ] and
mn

i as the output, whereas Xn+1
i is fed to the next layer and mn

i is
inserted into the memory bank to generate Mn+1

i+1 and carried over
to the next block and next layer.
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(a) Emformer (b) Advanced Emformer

Fig. 1: Advance Emformer with non-causal convolution, talking-heads attention and simplified compact augmented memory

The modified attention mechanism in emformer attends to the
memory bank and yields a new memory slot at each block:
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i , R̂

n
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i ]), (1)
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i , (4)

Zn
R,i = Attn(WqR̂
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i ,V
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i , (5)

Mn
i = [mn−1

i−U , · · · ,m
n−1
i−1 ], (6)

mn
i = Attn(sni ,K

n
i ,V

n
i ), (7)

sni = Mean(Cn
i ), (8)

where Kn
L,i and Vn

L,i are the key and value copies from previous
blocks. Zn

C,i and Zn
R,i are the attention output for Cn

i and Rn
i re-

spectively; sni is the mean of center block Cn
i ; Attn(q,k,v) is the

attention operation defined in [5] with q , k and v being the query,
key and value, respectively. U specifies the number of slots in aug-
mented memory; the most recent slots are used.

Zn
C,i and Zn

R,i are passed to a point-wise feed-forward network
(FFN) with layer normalization and residual connection to generate
the output of this Emformer layer, i.e.,

X̂n+1
i = FFN(LayerNorm([Zn

C,i,Z
n
R,i])), (9)

Xn+1
i = LayerNorm(X̂n+1

i + [Zn
C,i,Z

n
R,i]) (10)

, where FNN is a two-layer feed-forward network with ReLU.

2.1. Streaming Non-causal Convolution

Fig. (1b) illustrates the improvements applied to advance the Em-
former. Different from Eq. (1), the input to attention goes through
one step of FFN in macaron structure:

[Ĉn
i , R̂

n
i ] = LayerNorm

(
1

2
FFN(Xn

i ) +Xn
i

)
. (11)

Different from Eq. (9-10), the second FFN in macaron gets the input
from the convolution layer.

X̂n+1
i = Conv(LayerNorm([Zn

C,i,Z
n
R,i])), (12)

Xn+1
i = LayerNorm

(
X̂n+1

i +
1

2
FFN(X̂n+1

i )

)
. (13)

The convolution layer in Fig. (1b) has a similar structure as [15], ex-
cept the layer norm is used right after depth-wise convolution rather
than the batch norm. In our experiments, the layer norm gives better
performance than the batch norm.

The work [16, 17] uses sequential block processing where the
training and streaming decoding do the forward logic in the same
way. The self-attention and convolution receptive field is limited by
the block size and surrounding context size. It is trivial to use a non-
causal convolution operation in this way. However, the sequential
block processing is slow in training as it doesn’t utilize GPU parallel
computation capacity. For low latency situations where the block
size is tiny, sequential block processing is not practical to use.

To use the lookahead context in streaming speech recognition,
Emformer [14] uses the right-context-hard-copy methods in train-
ing. The right-context-hard-copy method copies and concatenates
each block Cn

i ’s lookahead context Rn
i . Then it puts the concate-

nated lookahead context at the beginning of the input sequence. The
right-context-hard-copy method is essential to avoid the lookahead
context leaking issue in training, where the higher transformer layer
has a larger lookahead context than the bottom layer when multiple
transformer layers are stacking on top of the other.

Fig. 2 shows the forward logic of using non-causal convolution
operation in Emformer. The output from the attention operation
[Zn

R,1 . . .Z
n
R,t,Z

n
C,1 . . .Z

n
C,t] is first splitted into two parts: right

context [Zn
R,1 . . .Z

n
R,t] and center block [Zn

C,1 . . .Z
n
C,t]. Then the

same depth-wise convolution is applied to both parts. For the cen-
ter block part, it is straightforward to directly apply the convolution
operation as shown in Eq. (14). The right context part needs to go
through reshape, padding, convolution operation and finally be re-
shaped to its original shape. In padding operation, each right context
block is padded with its corresponding block.

[Ẑn
C,1 . . . Ẑ

n
C,t] = Conv([Zn

C,1 . . .Z
n
C,t]) (14)

Pn
R,i = Zn

C,i[m− k + 1 : m] (15)

[Ẑn
R,1 . . . Ẑ

n
R,t] = Conv([Pn

R,1,Z
n
R,1] . . . [P

n
R,t,Z

n
R,t]) (16)

where k is the kernel size used in depth-wise convolution. The
padding Pn

R,i in Eq. (15) is the ending k − 1 feature vectors from
center block Zn

C,i.

2.2. Talking-heads Attention

Self-attention forms the foundation of transformers. Assume a set
of tokens V ∈ Rf×d that is packed into a matrix form and consider



Fig. 2: Training procedure of non-causal convolution in parallel
block processing. The same depth-wise convolution does the for-
ward separately for lookahead context (blue) and the center block
(yellow). The lookahead context is padded by feature vectors from
its corresponding block.

K ∈ Rf×d and V ∈ Rf×d its corresponding keys and queries,
respectively. Here f denotes the length of tokens and d is the di-
mension of each token. Self-attention aggregates information across
different tokens and transforms V as follows,

Attn(Q,K,V) = Softmax
(
QK>/

√
d
)
V.

Multi-heads attention assembles multiple standard self-attention
blocks for better representation learning,

MultiHeadAttn(Q,K,V) = Concat

({
Att(Qi,Ki,Vi)

}h

i

)
,

where h denotes the number of heads and Qi, Ki and Vi represents
the queries, keys and values from different heads, respectively.

One potential drawback of multiple-attention is that different
heads are trained independently without coordination. Talking-
heads attention [21] improves on multi-heads attention by allow-
ing information fusion among different attention heads. Assume
Softmax(A) the attention weights learned by different heads in
multi-head attention (A ∈ Rf×f×h). Talking-heads attention intro-
duces two additional linear layers immediately before and after the
softmax and computes the new self-attention weights as follows,

Softmax(A ∗Wl) ∗Wr. (17)

Here Wl ∈ Rh×h and Wr ∈ Rh×h are trainable parameters, and
Softmax is applied on the second dimension. In practice, the two
linear projections introduced by talking-heads attention are compu-
tationally efficient as the number of heads h used is often small.

2.3. Context Compression

The augmented memory is designed to introduce long-form infor-
mation into the attention. As shown in Eq. (6-7), the information
is introduced via the queries of the previous segments in the previ-
ous layer. This inter-layer strategy gets rid of the auto-regression
property if it is on the same layer, preventing inefficient block pro-
cessing in training. However, one potential issue of this design is
the representation mismatch between successive layers. In the at-
tention operation, the augmented memory slots from the previous
layer and the frames from the current layer are equally treated in
key and value, which depends on the similar representations on the
two layers. Otherwise, long-form information can be misleadingly
introduced.

To address the potential mismatch between memory slots and
frames, we put forward the context compression strategy in this pa-
per. The context compression directly introduces compact memory
to the key and value in the attention, not to the query. It is formalized
as follows,

mn
i = Compress(Cn

i ), (18)
Mn

i = [mn
i−U , · · · ,mn

i−1−O] (19)

where the Compress operation stands for a function that can com-
press the segment into one single vector, e.g., linear interpolation or
average pooling; this work chooses the linear interpolation. Con-
trasting to Eq. (19), an offset term O is introduced in Eq. (6), which
is intended to prevent the overlap between the short-form left con-
text and this long-form compressed context. For instance, on a model
with a segment size of 4 and a left context of 8, we set an offset of 2 to
skip the interval covered by the left context. According to Eq. (18),
the context compression operates the input C of each layer, prevent-
ing the auto-regression between successive segments; thus the whole
sequence can be trained in parallel, thoroughly taking advantage of
the graphics computing resource.

3. EXPERIMENTS

3.1. Data
Our training data is a large-scale speech recognition dataset com-
posed of two scenarios. The assistant scenario consists of three
parts. One is 13K hours of recordings collected from third-party ven-
dors via crowd-sourced volunteers responding to artificial prompts
with mobile devices. The content varies from voice assistant com-
mands to a simulation of conversations between people. The second
is 1.3K hours of voice commands from production. The last is 4K
hours of speech for calling names and phone numbers generated by
an in-house TTS model. The open domain dictation has 18K hours
of human transcribed data from video and 2M hours of unlabeled
videos transcribed by a high-quality in-house model. The data was
augmented with various distortion methods: speed perturbation [23],
simulated reverberation SpecAugment [24], and randomly sampled
additive background noise extracted from videos.

In evaluation, we use assi, call and dict dataset. The assi and call
are 13.6K manually transcribed utterances from in-house volunteer
employees, and each utterance starts with a wake word. The dict is 8
hours open domain dictation from crowd-sourced workers recorded
via mobile devices.

3.2. Experiment Setting

The input features are 80-dim log Mel filter bank features at a 10ms
frame rate; The network’s input is a 640-dim superframe consists of
8 consistent frames with a downsampling factor of 8 to 80ms frame
rate. This paper explored models with 32M parameters and 73M
parameters. In the 32M parameter baseline model, a projection layer
maps the superframe to a 320-dim vector. The encoder consists of
21 Emformer layers. Each layer uses four heads for self-attention,
and its FFN-block dimension is 1280. The predictor consists of a
256-dim embedding layer with 4096 sentence pieces [25], 1 LSTM
layer with 512 hidden nodes, and a linear projection layer with 1024
output nodes. The baseline with 32M parameters uses a left context
of 640ms (10 slots) in the left context. For the block size and right
context, two settings are investigated. One is the block size of 320ms
(4 slots) and right context of 80ms (1 slot); the other is a block size
of 400ms (5 slots) and a right context of 0 (0 slots). In the 73M
parameter model, the superframe is mapped to a 512-dim vector. The



encoder has 20 layers of Emformer. Each layer has an 8-head self-
attention and a 2048-dim FFN block. Its predictor has the same layer
configuration as the 32M baseline, but the number of LSTM layers
is 3. The left context is set to 2.4s, i.e., 30 slots in the left context. In
training, on the 73M parameter model, SpecAugment [24] without
time warping, and dropout 0.1 are used. We found that the 32M
parameter models are underfitting a large amount of training data.
The best performance is obtained by not using either scheme.

For our proposed models, we first investigate the non-causal
convolution. A kernel size seven is used for depth-wise convolution
operations. In the 32M parameter model, the superframe is projected
to a 256-dim vector. In the 73M parameter model, the superframe is
projected to a 384-dim vector. It consists of 20 layers containing an
8-head self-attention and a 1456-dim FFN block in each layer. It
consists of 18 layers containing a 4-head self-attention and a 1024-
dim FFN block in each layer. Other settings are the same as the
baselines. The block size and right context are fixed as 320ms and
80ms, respectively. For the context compression scheme, we use a
regular left context of 8 slots, implying 640ms. The compressed left
context is set to 2 slots, implying 640ms; also, it uses an offset of
2, O in Eq. (19), to skip the same interval of the 640ms regular left
context. In total, ten slots are used but implying a history of 1280ms.

In all the experiments, alignment restrict RNNT [26] is used.
The training of all the models uses 32 Nvidia V100 GPUs. We eval-
uate the models by word error rate (WER) for accuracy and the real-
time factors (RTFs) and speech engine perceived latency (SPL) for
latency. The SPL measures the time the speech engine gets the last
word from user utterance to the speech engine transcribes the last
word and gets the endpoint signals.

3.3. Improvement from Non-causal Convolution

Table. 1 gives the WER, RTF, and SPL results for models with 32M
and 73M parameters. The results show that by keeping the overall
context size (the sum of block size and lookahead context size) the
same, using lookahead context gives WER improvement over not
using it, especially for open domain dictation scenarios. We also ob-
serve that convolution and macaron structure improves the baseline
using the same context configuration. Table. 1 also show that the
direct application of causal convolution with 400ms block size does
not improve the baseline model which leverages 320ms block size
with 80ms lookahead context for both 32M and 73M models.

Using lookahead context adds more computation for encoders
in transducer model, as the forward logic has duplicated computa-
tion for the lookahead context. For the 73M model, using right side
context 80ms shows 10% relative RTF increase. However, looka-
head context provides more accurate ASR results and yields slightly
better speech perceived latency (SPL).

3.4. Improvement from Talking-heads Attention and Context
Compression

Table. 2 shows the impact of applying talking-heads attention and
context compression on top of Emformer with non-causal convolu-
tions. For the model with 32M parameters, the talking-heads atten-
tion generates 4.6%, 3.8%, and 2.8% relative WER reductions on
open-domain dictation, assistant general queries, and assistant call-
ing queries, respectively. Using two slots of context compression
outperforms the model with only regular left context. Combining
non-casual convolution, talking-heads, and context compression in
the 32M model improves the WER by 5.1%, 14.5%, 8.4% relatively
on open-domain dictation, assistant general, and assistant calling test

Table 1: WER, RTF and SPL impact from non-causal convolution
and lookahead context.Column ‘#p’ gives the number of parameters
in each model. Column ‘w/C’ denotes whether the convolution is
applied or not. ‘C’ and ‘R’ represents the block size and lookahead
context size. The unit for ‘C’, ‘R’ and ‘SPL’ is millisecond.

#p w/c C R dict ass call SPL RTF

73M N 400 0 16.78 4.18 6.19 606 0.27
320 80 15.49 3.98 5.81 599 0.30

73M Y 400 0 16.11 4.05 5.94 615 0.27
320 80 14.67 3.65 5.85 595 0.30

32M N 400 0 18.31 5.17 6.57 635 0.21
320 80 17.09 5.05 6.68 588 0.22

32M Y 400 0 17.70 4.78 6.76 626 0.22
320 80 17.02 4.66 6.53 605 0.22

sets, while maintaining similar SPL and RTF as the Emformer base-
line. For the model with 73M parameters, talking-heads attention
and context compression obtain on par WER as the Emformer with
non-causal convolution. Note the 73M parameters baseline uses 30
slots of left context, while context compression uses 8 slots of left
context and 2 slots of memory which slightly improves the RTF
and SPL. However, the 73M model already has a much stronger
model capacity than the 32M model. The lightweight optimizations
of talking-heads attention and context compression do not generate
obvious improvement.

Table 2: WER and RTF and SPL impact from the context compres-
sion. Column ‘L’ stands for the length of left context. Column ‘CL’
stands for the length of compressed left context. The unit of both
columns is slot: for ‘L’, 1 slot means 80ms; for ‘CL’, 1 slot implies
320ms, i.e. block size.

Model dict ass call SPL RTF
73M Emformer (baseline) 15.49 3.98 5.81 599 0.30
+ Non-causal 14.67 3.65 5.85 595 0.30
+ Talk heads 14.69 3.64 5.79 574 0.30
+ Context Compression 14.69 3.66 5.77 554 0.29
32M Emformer (baseline) 17.09 5.05 6.68 588 0.22
+ Non-causal 17.02 4.66 6.53 605 0.22
+ Talk heads 16.25 4.48 6.35 620 0.23
+ Context Compression 16.22 4.32 6.12 589 0.24

4. CONCLUSIONS

In this work, we proposed to use non-causal convolution, talking
heads attention, and context compression to improve the streaming
transformer transducer for speech recognition. This work managed
to apply non-causal convolution with lookahead context in stream-
ing transformer by separating the forward logic for the center block
and lookahead context. The talking-heads attention coordinates the
training of different heads in self-attention. The context compression
keeps the representation contained in the long-form and short-form
history similar, providing a compact way of introducing long-form
information. The experiments on 32M parameter and 73M parame-
ter models show that the proposed model outperforms the Emformer
baseline on open-domain dictation, assistant general, and assistant
calling scenarios while maintaining comparable RTF and latency.
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