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ABSTRACT

Recognition of uncommon words such as names and technical termi-
nology is important to understanding conversations in context. However,
the ability to recognise such words remains a challenge in modern
automatic speech recognition (ASR) systems.

In this paper, we propose a simple but powerful ASR decoding
method that can better recognise these uncommon keywords, which
in turn enables better readability of the results. The method boosts the
probabilities of given keywords in a beam search based on acoustic
model predictions. The method does not require any training in advance.

We demonstrate the effectiveness of our method on the LibriSpeeech
test sets and also internal data of real-world conversations. Our method
significantly boosts keyword accuracy on the test sets, while maintaining
the accuracy of the other words, and as well as providing significant
qualitative improvements. This method is applicable to other tasks such
as machine translation, or wherever unseen and difficult keywords need
to be recognised in beam search.

Index Terms— contextual biasing, speech recognition, keyword
boosting, keyword score, beam search.

1. INTRODUCTION

With the advances in deep learning technology, the performance of au-
tomatic speech recognition systems have seen tremendous improvements
in the recent years [1, 2, 3, 4]. The earlier models have struggled to over-
come the overfitting problem given insufficient data, but the development
of semi-supervised methods like wav2vec 2.0 [5] has enabled strong per-
formance with a smaller amount of labeled data. Moreover, with the appli-
cation of various augmentation methods [6], models have become better at
recognising speech in unfamiliar environments or in noisy environments.

Despite this, recognising unseen or uncommon words like person
names, location names or technical terminologies is left unsolved. In fact,
this problem applies to humans as well. No matter how good a person
is at listening, it is almost impossible to understand a conversation full of
unknown words. Unfortunately, these words might play a very important
role in understanding the conversation, even though the total amount
of occurrence might be small. Therefore, we focus on the problem of
recognising keywords that were not observed during training.

Contextual information has been researched by using fusion methods
with trained language models (LM) [7, 8, 9], but also there are works deal-
ing with contextual biasing which utilises a specific context such as named
entity or personalised contacts. Majority of works require training an
additional representation such as bias encoder [10, 11, 12], bias LM [13],
class based LM [14, 15, 16], or additional data augmentation of a named
entity with Text-to-speech [17]. Our work is similar to [18] that the bias
information is encoded to trie structure. However, they require additional
training of RNN-T [19] and LSTM-LM [20] to utilise bias information,
whereas our method requires only a list of keywords we are interested in.

In short, we assume that there is a list of keywords that might appear
in the conversation. Our method promotes them through beam search
decoding. We use a character-level Connectionist Temporal Classification
Model (CTC) [21] as an ASR model, specifically a pre-trained wav2vec
2.0 model, but other kinds of model can also be used as long as they
are supported by the beam search decoder. We can use the decoding
strategy with or without a language model, and in both cases the strategy
will prove to be effective. In the real-world, keywords can be a list of
characters in a book, a list of people attending a meeting, or a dictionary
of technical terminology related to a lecture.

While performing a beam search, the decoding method favours the
given keywords if the input speech is pronounced similar to the given
keywords. Since the beam search is based on the acoustic model (AM)
probabilities, this method would not be activated unless the speech
actually contains a keyword or a word with similar pronunciation. The
method does not require any training in advance. Our extensive exper-
iments demonstrate that we see a significant boost in keyword accuracy,
while maintaining the accuracy on the rest of the output.

2. KEYWORD-BOOSTED DECODING

In this section, we describe the proposed keyword-boosted decoding
strategy.

2.1. Keyword Prefix Tree Search

We first prepare a prefix tree (Trie) for the given list of keywords. Prefix
tree is to figure out if a prefix is a part of some keyword we are paying
attention to. Each node in the tree consists of a token and a keyword
index if the path from the root node constitutes a keyword, otherwise a
non-keyword index (-1). A keyword can be made of multiple words, but
to simplify a problem, we only use single-word keywords.

Figure 1 shows an example of keyword prefix tree with sample
keyword set {cat, car, coat}. Each node has its token as a state and a
word index. First node represents the root node, n0, and the colored
nodes are leaf_nodes. Dashed node means going back to the n0 since
there is no child node.

For each step in the beam search, we will find the next node from the
corresponding node and the time complexity for finding next node isO(1).
If there are many keywords to be considered, building the trees would be
relatively time consuming, but this only needs to be done once, and can
be reused thereafter in multiple inferences sharing the same keyword list.

2.2. Keyword-boosted Beam Search

Once a prefix tree of keywordsK is prepared, we can decode the acoustic
model output with keyword-boosting algorithm. Let PAM(s) for each
s∈V be a probability of occurring a token s based on an AM where V
is the set of tokens. Beam search proceeds along the time step t≤T with
beam width B. For each step t, each b-th beam has a state st,b, which

ar
X

iv
:2

11
0.

02
79

1v
1 

 [
cs

.S
D

] 
 6

 O
ct

 2
02

1



Fig. 1. Keyword prefix tree when a list of keyword consists of (’cat’,
’car’, ’coat’) in character level.

# keywords dev-clean dev-other test-clean test-other
1% 714 (1.3) 1,008 (2.0) 750 (1.4) 1,178 (2.3)
5% 2,632 (4.9) 3,842 (7.5) 2,584 (4.9) 4,126 (7.9)

Table 1. The number of keyword occurrence (the ratio to total word
occurrence in %). Keywords account for only a very small percentage of
total words.

can be a character or a sub-word. Additionally for each beam, node nt,b

of the prefix treeK which begins at the n0 and traverse the treeK as the
beam search proceeds. For CTC models which has frame-synchronous
decoder [21], st,b does not always change at every timestep t. Therefore,
nt,b would be updated only when its state has actually changed.

After each beam search step and the state st,b is set, the algorithm
updates the current tree node nt,b according to the search result (Step 1).
If st,b is in the children of nt,b we can traverse nt,b to the child whose
state is st,b. If it is not, nt,b should go back to n0. However, there is a
chance that st,b is included in the children of n0. In this case, nt,b will
traverse to the child of n0 whose state is st,b.

Before proceeding to the next step t+1, the decoder calculates the
keyword boosting score Kt for each candidate next state like a language
model score (Step 2). This score intends to give more weights to the
children of the current node which continue to go to the next keyword
token. We introduce a new hyperparameter keyword weight wk for
controlling the strength of the boosting algorithm. The decoder gives wk

for the children of the nt,b and the 0 for the rest of states. Therefore, the
keyword score for each b-th beam candidate is

Kt,b(s)=

{
wk, if s∈childrenK(nt,b),nt,b 6=n0

0, otherwise,

for each s∈V .
Accordingly, even if an AM does not give much probability to a certain

state, Kt may give some extra score to boost the state when its node is
in the middle of keyword prefix path. Excessively high value of wk may
result in overboost (boosting to be a keyword even if it does not actually
presented) and a low value may result in nothing but a vanilla beam search.
Moreover, this score is not applied from the n0 because we don’t want
to boost keywords from the beginning, which may also cause overboost.
Detailed algorithm for this method is represented in Algorithm 1.

Using the keyword score defined above, for each time t, the beam
search finds B states in the order of maximising the following score,

logPAM(s)+wLM logPLM(s|H)+wkKt(s|H),

where H represents the history.

Algorithm 1 Keyword-boosted beam search step at time t.
Kt,b(s)←Kt−1,b(s),∀s∈V,∀b≤B
for b≤B and st,b 6=st−1,b do . update if state has changed.

* Step 1: Update current node
if st,b∈childrenK(nt−1,b) then

nt,b← traverseK(nt−1,b,st,b)
else if st,b∈childrenK(n0) then

nt,b← traverseK(n0,st,b)
else

nt,b←n0

end if
* Step 2: Calculate keyword score
if nt,b 6=nt−1,b then

if nt,b=n0 then
Kt,b(s)←0,∀s∈V

else
if nt,b 6= leaf_node then

Kt,b(s)←−wk∗depthK(nb),∀s∈V −{blank} .
subtractive cost

end if
Kt,b(s)←wk,∀s∈childrenK(nt,b)

end if
end if

end for

2.3. Keyword subtractive cost

Being on the tree path does not guarantee that the beam is actually
containing a keyword. When the path on K is about to break because
it is not making a keyword, we have to subtract the accumulated value
up to the current node. If the next state is not on the tree, we subtract
wk∗depthK(nt,b) as described in Algorithm 1. Note that we do not have
to subtract on CTC blank state which is still on the keyword path.

In Figure 1, dashed line represents the escape from the tree which
receives the subtractive cost and go back to the n0. For example, if the
prefix path is coa and the next state is going to be l, then it will get−2
as a subtractive cost and the node will be initialised to the n0.

3. EXPERIMENTS

This section describes the ASR model and the datasets used in the
experiments, and the results that demonstrate the effectiveness of our
proposed method.

3.1. Baseline ASR system

We use the wav2vec 2.0 LARGE [5] model as the baseline ASR model.
The model is pre-trained on the unlabeled audio data of LibriVox
dataset [22] and fine-tuned on either 100 hours and 960 hours of tran-
scribed LibriSpeech dataset[23]. The two models are selected to represent
scenarios with varying amount of labeled in-domain data. We do not
fine-tune the data further, but use a 4-gram word LM that is trained
on the LibriSpeech LM corpus [24]. In addition, we use a 6-gram
character-level LM during decoding, as a multi-level LM similar to [25].
This decoding method essentially use the character-level LM, and then
substitute character-level probability with word-level ones when each
word is made. We will compare the case of LM weight wLM =1.0 or
0.0 (no LM) since the use of LM is optional in our method. Beam search
decoding has 100 beams and other fixed model weights.



wLM =0.0 wLM =1.0
dev test dev test

clean other clean other clean other clean other
100h fine-tuned

No Boosting 3.15 6.42 3.06 6.10 2.41 4.94 2.44 4.80
1% Keywords 3.08/3.06 6.35/6.33 2.96/2.94 6.00/5.95 2.39/2.37 4.89/4.88 2.41/2.40 4.78/4.76
5% Keywords 3.06/3.01 6.28/6.27 2.95/2.96 5.97/5.91 2.39/2.38 4.86/4.89 2.41/2.42 4.78/4.78

960h fine-tuned
No Boosting 2.16 4.56 2.13 4.46 1.77 3.51 1.78 3.61

1% Keywords 2.13/2.14 4.49/4.48 2.09/2.10 4.39/4.38 1.74/1.75 3.48/3.48 1.76/1.76 3.59/3.57
5% Keywords 2.09/2.13 4.42/4.47 2.08/2.15 4.37/4.41 1.72/1.75 3.43/3.47 1.75/1.76 3.60/3.61

Table 2. Word Error Rates (WER) on LibriSpeech with and without n-gram LM and keyword boosting wk=(0.6/1.2).

LM 7 3

wk P R F1 P R F1
100h 0.0 98.9 86.0 92.0 99.0 89.5 94.0
fine 0.6 98.9 92.4 95.5 98.9 92.5 95.6

-tuned 1.2 97.5 94.7 96.1 98.7 93.2 95.9
960h 0.0 99.6 94.5 97.0 99.3 95.6 97.4
fine 0.6 99.2 97.7 98.5 99.2 97.9 98.5

-tuned 1.2 97.8 98.5 98.1 98.8 98.4 98.6

Table 3. Precision (P), Recall (R) and F1-score (F1) on the LibriSpeech
test-clean with boosting 1% keywords for 100h fine-tuned, 960h fine-
tuned model respectively.

3.2. Datasets and keyword extraction

LibriSpeech. We evaluate our method on LibriSpeech dev and test sets.
On this dataset, we extract the keyword set for each session (book) using
the TF-IDF [26] method. LibriSpeech dataset can be classified by the
book where it comes from. From the metadata given by the dataset, we
can classify every pair of audio/text file from 960h train dataset into the
book name and collect data according to its book. The keywords are
only extracted from the training set – they are not extracted from the dev
and test sets since we have to only use keywords obtainable in advance.
With the collected text data for each book, we build a TF-IDF model
and extract book-wise keywords with top n% of the words according to
TF-IDF scores. All single-letter word is excluded in the list.

We take two set of keywords from book-wise keywords, top 1% and
top 5% of the words according to TF-IDF scores. The 1% set has 16.6
words and the 5% set has 85.5 words for each book on average. We
build prefix trees Ki for each i-th book and put them into every audio
file from the corresponding book. Since this tree have the whole list of
keywords from the book so the most of them are not occurring in each
audio file. Table 1 presents the total number of extracted keywords in
each dataset.

In-house dataset. We also perform experiments using Korean-language
in-house datasets consisting of Clova Note (transcription service) dataset
and NAVER VLive (Live show for celebrities) dataset. The Clova Note
dataset has 5,446 audio segments that belong to 365 sessions1, and each
channel has 7.5 keywords in average extracted by humans. The NAVER
VLive dataset has 17 audio recordings spoken by two K-pop groups (BTS,
Blackpink), and for each audio, the keyword list contains the members’
name (real name and stage name) of each group, 25 words for BTS and 11

1These are purposefully recorded test data, not user-uploaded data.

words for Blackpink. The baseline model used in this experiment is also
a wav2vec 2.0-based model, which has been trained on general-domain
Korean language data.

Fig. 2. Matching blocks between the ground truth and ASR result. Bold
text represents a keyword.

3.3. Metric

Since the number of keywords is relatively small compared to the size of
the corpus (Table 1), the improvement in character error rates (CER) and
word error rates (WER) would be limited even if our method is clearly
effective in recognising the keywords.

We use python difflib2 for string comparison which enables
us to compare two strings by matching blocks between them. By com-
paring between the ground truth and the ASR result with the boosting
keywords, we can count the true positive (TP): the number of keywords
in a matching block, false positive (FP): the number of keywords in the
ASR result but not in a matching block, false negative (FN): the number
of keywords in the ground truth but not in a matching block.

For example in Figure 2 with 3 matching blocks, we have TP equals
to 1 because the keyword steve is in the first matching block (B1) and FP
also equals to 1 because the second steve in ASR result is not inside of
any blocks. For a similar reason, FN equals to 0. Consequently, precision
is 50%, recall 100% and F1-score 66.7%.

Based on these, we can calculate precision, recall and F1-score with
respect to the keywords. Our work focuses on increasing recall while
minimizing reduction in precision.

3.4. Results

LibriSpeech. In Table 2, we report the results on LibriSpeech datasets
with LM. Upper section is the results with 100h fine-tuned model
representing the low-resource environment, and the lower section with
960h fine-tuned model representing full-resource environment. The first
row of each section shows the result without keyword boosting, the
second row shows the result with boosting top 1% keywords and the
last row with top 5% keywords. As we discussed in Section 3.3, the
improvement in WER is relatively small. However in all scenarios, using

2https://docs.python.org/3/library/difflib.html



Positive keywords milner,elmwood, sandford, woodley, ojo, dorothy, ozma, scarecrow, miss, lord, tottenhots, pumpkinhead, ...
results ground truth miss milner you shall not leave the house this evening sir

wk=0 miss millner you shall not leave the house this evening sir
wk=1.2 miss milner you shall not leave the house this evening sir

Positive keywords cap’n, boolooroo, button, ghip, trot, pinkies, ghisizzle, blueskins, calder, bill, marianna, angareb, tiggle, ...
results ground truth you are not like my people the pinkies and there is no place for you in our country

wk=0 you are not like my people the pinkeys and there is no place for you in our country
wk=1.2 you are not like my people the pinkies and there is no place for you in our country

Negative keywords servius, praetors, senate, laws, solon, hovel, despotism, julian, decrees, athens, edicts, ...
results ground truth the worthy friend of athanasius the worthy antagonist of ...

wk=0 the worthy friend of athanasius the worthy antagonist of ..
wk=1.2 the worthy friend of athenasius the worthy antagonist of ...

Table 4. Positive and negative samples of transcription on LibriSpeech with keyword boosting or not.

the boosting method is effective in decreasing WER. Boosting with 5%
of the keywords generally outperforms the other setups.

In addition, we can find that this method is more effective when the
model is trained in a low-resource environment in Tables 2 and 3. This
is an expected observation, because the model with not enough exposure
in a target context is probably not familiar with the uncommon words.
For a similar reason, the effect is larger without LM than with LM, since
the LM should somewhat provide the context and keyword information.
Furthermore, high wk performs better in low-resource environment and
moderate wk is better in the higher-resource environment.

Table 3 shows the metrics mentioned in Section 3.3 on LibriSpeech
test-clean. Although the precision is slightly decreased, the gain of
recall is significant, resulting in a large gain in the F1-score. The
same trend can also be observed in the other test sets. The keyword
recall not only depends on wk, but also on wLM although wk is the
more influential factor. Our method is effective on every dataset, but
in particular, on test-clean set of LibriSpeech we get a significant im-
provement of keyword recall from 94.5% to 98.5%. The LM often
has negative effects on keyword recall in some datasets but it is con-
sistently helpful to improving WER in every test scenario, as shown in
Table 2.

In-house dataset. Table 5 shows the character error rate (CER) and the
precision-recall values of the experiments done on our in-house datasets.
We select larger values of wk since this is found to be more effective for
the Korean dataset. Even though the keywords do not make up a large
proportion of the total word occurrences, there is a huge improvement
in keyword recall especially from 61.9% to 82.3% in the NAVER VLive
dataset, and a small but consistent improvement in CER. This proves that
this method can be effectively utilised for real-world ASR services when
the context can be specified.

3.5. Analysis of side-effects

Boosting a larger number of keywords than necessary causes overboost
which makes the results worse for certain types of data. The reduction
of precision in Table 3 show that some results recognise keywords more
often than the actual number of occurrence, though this is still relatively
rare. We can see an example of this in the last row of Table 4. The
keyword athens is very similar to the word in ground truth athanasius
so that athenasius has been recognised. Subtractive cost did not work as
expected in this example, because the candidates containing the correct
word had been pruned in the beam search due to its relatively lower
scores than other boosted candidates. This is one of the corner cases that

data wk CER Precision Recall F1-score
Clova 0 8.07 98.9 91.9 95.3
Note 1 7.92 98.7 93.8 96.2

3 7.81 98.4 95.5 96.9
5 7.78 98.1 96.3 97.1
7 7.90 97.7 96.5 97.1

NAVER 0 16.74 95.8 61.9 75.2
VLive 1 16.70 95.6 65.8 78.0

3 16.62 93.8 74.0 82.7
5 16.58 91.7 79.9 85.4
7 16.60 87.5 82.3 84.8

Table 5. Result on Clova Note and VLive datasets

our method was not able to handle.

4. CONCLUSIONS

We proposed a new keyword-boosted beam search algorithm in speech
recognition and demonstrated its performance with keywords extracted
from the same book in the LibriSpeech dataset and with human-defined
keywords in the in-house dataset. The result shows that this method is
clearly helpful for recognising uncommon keywords that are important
for understanding the context. We can use this method whenever we
lack in-domain training dataset containing difficult keywords, but we
only have the list of these words. It does not need any further text data
or training process.

We observed that language models are helpful for improving key-
word recall, but our boosting method is far more effective than LM at
maintaining lower WER while mitigating the risk of overboost.

Our method has one requirement: we should have the keyword list in
advance. We used TF-IDF on the training data of LibriSpeech to extract
book-wise keywords, but there are many ways to obtain keywords in
advance, such as using the list of characters in a TV show or the list of
terminologies in a lecture. Strategies to effectively extract keywords are
potential areas for future research.
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