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ABSTRACT
The quality of speech coded by transform coding is affected by vari-
ous artefacts especially when bitrates to quantize the frequency com-
ponents become too low. In order to mitigate these coding artefacts
and enhance the quality of coded speech, a post-processor that relies
on a-priori information transmitted from the encoder is traditionally
employed at the decoder side. In recent years, several data-driven
post-postprocessors have been proposed which were shown to out-
perform traditional approaches. In this paper, we propose PostGAN,
a GAN-based neural post-processor that operates in the sub-band do-
main and relies on the U-Net architecture and a learned affine trans-
form. It has been tested on the recently standardized low-complexity,
low-delay bluetooth codec (LC3) for wideband speech at the low-
est bitrate (16 kbit/s). Subjective evaluations and objective scores
show that the newly introduced post-processor surpasses previously
published methods and can improve the quality of coded speech by
around 20 MUSHRA points.
Index Terms: Deep Neural Network (DNN), Speech Coding, Coded
Speech Enhancement, Post-Filter, Post-Processor, Generative Ad-
versarial Networks (GAN)

1. INTRODUCTION

The recently standardized low-complexity, low-delay codec
(LC3) [1, 2] relies on transform coding, quantizing and coding the
spectral coefficients after a Modified Discrete Cosine Transform
(MDCT). At medium to high bitrates, due to sufficient bits, trans-
form coding yields sufficiently good to transparent quality. However,
at low bitrates, many spectral coefficients are quantized to zero re-
sulting in spectral holes, thereby causing audible artefacts commonly
known as ”birdie” artefacts [2]. To enhance the perceptual quality at
these low bitrates, tools such as noise filling [2, 3] and Long Term
Post-filter (LTPF) are employed [2, 4, 5]. While noise filling typ-
ically aids in mitigating the audible artefacts by filling the spectral
holes with pseudo-random noise scaled by a transmitted energy fac-
tor, the LTPF aims to improve the harmonicity of coded speech by
attenuating inter-harmonic noise. LTPF depends on the pitch lag in-
formation provided by the encoder. This transmission of additional
information from the encoder to the decoder as side information re-
sults in an overhead in the bit consumption. Moreover, these tools
are tightly linked to the coding scheme and cannot be employed over
an already deployed codec.

Several data-driven models have been proposed as an alterna-
tive to enhance the quality of coded speech. While the majority
of the models [6, 7, 8, 9, 10] do not rely on any additional side
information, [11] transmits residual log power spectra to the de-
coder as side information. Among these data-driven models, gen-
erative models operating in time-domain are the most promising ap-
proach for recovering the lost spectral information during the quan-
tization of the spectral coefficients to zero. However, this comes at

the expense of complexity. Two prior works that consider genera-
tive models as post-processor, one [9] using an autoregressive model
called LPCNet [12], and other named Deep Coded Audio Enhancer
(DCAE) [10] opting for Generative Adversarial Networks (GANs).
Since they were tested on two different codecs, direct comparison
between autoregressive and GAN approaches in this context cannot
be found in the literature.

However, in recent years, GANs have been shown to yield very
high quality speech at very low computational cost, competing au-
toregressive models for applications like Text-to-Speech (TTS) and
low bit rate speech coding [13, 14, 15, 16]. This serves as motivation
to propose a GAN-based post-processor.

1.1. Key Contributions of the Paper

• We propose a GAN-based post-processor called PostGAN
that operates in the sub-band domain and combines the U-
Net architecture with a learned affine transform to enhance
the quality of coded speech.

• We test our proposed model on the LC3 codec at 16 kbit/s on
wideband speech (16 kHz) and is compared to the previously
proposed methods in [8, 9, 10].

• PostGAN is suitable for commnunication applications, be-
cause, although trained on 1 s frames during training, it can
operate on 10 ms frames during inference.

• In contrast to [9] which requires access to the bitstream, our
model, similar to [8, 10], considered and processes only the
coded speech at the output of the decoder. This allows our
model to be deployed at the end of the communication chain
with a minimal change.

• The proposed model is shown to outperform the prior meth-
ods for the given task.

2. PROPOSED MODEL

2.1. Generator

The generator architecture of the proposed PostGAN is shown in
Figure 1. It takes coded speech x̃ and conditional features h as input
and outputs enhanced speech x̂ by learning a mapping function f(.)
such that

x̂ = f(x̃, h), (1)

For the investigations in this paper, the conditional features h
comprise an 80-band mel-spectogram derived from the coded speech
x̃.
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Fig. 1. Generator architecture of PostGAN with encoder, decoder
and CondNet blocks along with PQMF analysis and synthesis. The
value of N in the proposed architecture is 6.

Fig. 2. Detailed description of encoder and decoder blocks.

To reduce computational complexity, the proposed generator op-
erates in the subband domain similar to the ones in [17, 15]. The in-
put time-domain signal is converted to subbands using PQMF anal-
ysis and the output subband signals are converted to time-domain
signal using PQMF synthesis [18]. In addition, the generator net-
work comprises of N encoder, decoder and CondNet blocks along
with pre-conv and post-conv layers. The detailed architecture of a
single encoder, decoder, CondNet and up/downsample blocks are
shown in Figures 2 and 3. In our implementation, we use 6 encoder,
decoder and CondNet blocks and all the convolutions used are causal
convolutions.

The main task of the encoder block is to compute the modula-
tion parameters γ and β based on the internal latent representation
of the encoder block and the latent obtained from the corresponding
CondNet block. The information learnt by the model from condi-
tional features and the input coded speech are complementary, i.e.,
the network learns the spectral envelope mainly from the conditional
latent and finer temporal dependencies from the internal latent of the

Fig. 3. Detailed description of CondNet and Up/Downsample
blocks. The scaling factors used are [ 1, 2, 2, 2, 2.5, 2 ] and up-
sampling factors are [ 40, 40, 20, 10, 5, 2 ].

encoder block. This allows the network to mitigate artefacts such
as pitch jumps and loudness mismatches that are common in para-
metric generative models. The internal latent representation is then
passed through a gated activation followed by a downsampling block
before passing it to the next encoder block. Since learning the pa-
rameters of an affine transform to modulate the latent was shown
to outperform simple upsampling of latent [14, 15], we use the same
Temporal Adaptive DE-normalization (TADE) residual block as pro-
posed in [14] as the basic building block of our decoder block. The
only modification is that, the modulation parameters γ and β are
not computed within the decoder block from the conditional fea-
tures but obtained from the corresponding encoder block. All the
normalization layers use channel normalization due to the benefits it
brings compared to instance normalization as described in [15]. The
first decoder block takes as input the latent from last encoder block
added with some random vector drawn from the normal distribution
N (0, 1). This was done to add some inherent stochastic part in the
generator.

The CondNet learns hidden representations from the frame level
conditional features by first upsampling followed by a causal con-
volutional layer and activation. Since each encoder block has a
corresponding CondNet block, it allows the encoder to learn useful
representations at different resolutions. The upsampling and down-
sampling blocks within the encoder/decoder blocks use an interpo-
lation between two causal convolutional layers to either upsample or
downsample the input. The main motivation to use such techniques
instead of a simple transposed convolution was to avoid the artefacts
caused by the upsampling [19].

2.2. Discriminator

For adversarial training, we use an ensemble of six discriminators
operating on multiple random windowed slices of the input signal as
proposed in [13]. The architecture of the individual discriminators
is same as the one proposed in [14]. Three among six discriminators
operate in the subband domain similar to [14] where a random win-
dow of length 512 is extracted from time-domain signal and is con-
verted to 1, 2 and 4 bands, respectively, using PQMF analysis [18].
The other 3 discriminators are multi-scale discriminators [16] oper-



ating on the signal downsampled by a factor of 1, 2 and 4, respec-
tively. The combination of subband and multi-scale discriminators
was found to converge faster than either only subband or only multi-
scale discriminators.

3. EXPERIMENTS AND RESULTS

3.1. Training

The training procedure follows a two step strategy similar to the one
used in [14, 15, 20] as it yields a stable and efficient training. At first,
the generator is pre-trained using multi-resolution STFT loss Łaux

between the log-magnitude of the output of the generator and the
target signal at different STFT resolutions as described in Equation
6 of [20]. The pre-training is followed by adversarial training where
the adversarial metric comprises 2 components, hinge loss and the
auxilary loss used as a regularization term. The final generative ob-
jective is given by

min
G

(
Ex̃

[
1

6

6∑
k=1

−Dk(G(x̃, h))

]
+ Łaux(G)

)
, (2)

where x̃ is the coded speech and h is the conditioning feature.
All the convolutional layers of generator andDk use weight normal-
ization [21]

3.2. Baseline Models

For the evaluation, the proposed model PostGAN is compared to the
following baseline models:

• An autoregressive generative model based on LPCNet [12] as
proposed in [9]. In contrast to the conditional features used
in [9] we use the conditional features proposed in [12] derived
from the coded speech. Although suboptimal, this is done to
keep the comparison fair. The training is also done in two
steps as proposed in [9, 12]. Data augmentation is also turned
off since it was observed that it did not bring any benefit on
the database used for training.

• DCAE as proposed in [10]. In order to avoid the mismatch
of dimensions between the encoder and decoder of the U-Net
architecture, we use the kernel size of 32 instead of 31 used
in [10].

• Improved DCAE which uses the same generator architecture
but the discriminator used is the same as described in Sec-
tion 2.2. The training of the model is done as described in
Section 3.1.

• Mask-based post-filter [8] which estimates a real-valued
mask per time-frequency bin. In contrast to [8] which op-
erates only until 6.4 kHz audio bandwidth, for our evaluation,
we use the post-filter until 8 kHz.

• Streamwise StyleMelGAN (SSMGAN) as proposed in [15]
but conditioned on a 80-band mel-spectogram derived from
the coded speech.

3.3. Experimental Setup

The PostGAN and the baseline models are trained on a NVIDIA
Tesla V100 GPU on a subset of 30 speakers (15 male, 15 female)
out of 109 speakers of VCTK corpus [22] at 16 kHz. LPCNet and
DCAE apply a pre-emphasis filter on the input signal before feeding

Fig. 4. Average MUSHRA scores with 13 listeners and Student’s t
distribution comparing PostGAN with other GAN-based models.

it to the model and then apply a de-emphasis on the enhanced sig-
nal. In contrast, the proposed PostGAN, SSMGAN and improved
DCAE operate directly on the signal. The training methodology
and hyperparameters of the mask-based model is same as [8]. For
DCAE, the training hyperparameters are the same as in [10] with
the exception of batch size which is set to 32 and is trained for 150
epochs. The proposed PostGAN, SSMGAN and improved DCAE
are pre-trained for 105k iterations followed by adversarial training
for 645k iterations as explained in the Section 3.1 using the dis-
criminator proposed in the Section 2.2 on a batch size of 32. The
generator is trained with the Adam optimizer with a learning rate of
lrg = 1 · 10−4 and β = [0.5, 0.9] for the first 150 epochs. Then it
is changed to 5 · 10−5 but with β unchanged. During the adversarial
training, the discriminator is also trained with the Adam optimizer
but with a learning rate of lrd = 5 · 10−5 and same β.

3.4. Subjective Tests

For our subjective evaluation, we use the MUSHRA listening test
methodology [23]. The test is divided into two sub-tests as shown
in Figures 4 and 5 with each test consisting of 13 listeners and 11
items. A 3.5kHz low-pass filtered version of the original signal was
added as an anchor. Out of 11 items, 5 items come from the test set
of the VCTK database and 6 items are from the unseen proprietary
database consisting of 4 different languages (3 of the 4 languages are
unseen during training). The first part of the test compares only the
GAN-based models, i.e. PostGAN, SSMGAN, DCAE and improved
DCAE. The results not only highlights the benefit of PostGAN over
the other GAN-based models but also shows the disadvantage of the
training method and the discriminator used to train DCAE in [10].
The discriminator proposed in [10] reaches saturation very early in
the training, leading to the generator being trained only on the regu-
larization term, i.e. L1 norm causing a low-pass effect. As the gener-
ators used in DCAE and improved DCAE are exactly the same, com-
paring them highlights the benefit of the discriminator proposed in
Section 2.2 and the training method proposed in Section 3.1. Since
the discriminator and the training method of improved DCAE and
PostGAN are exactly the same, comparing them highlights the ben-
efit of combining the U-Net architecture with an affine transform



Fig. 5. Average MUSHRA scores with 13 listeners and Student’s t
distribution comparing PostGAN with prior methods.

Name WARP-Q STOI POLQA
LC3 0.6865 0.9280 3.4325

Mask-Based 0.6244 0.9529 4.081
LP35 0.6625 0.9999 3.9599

PostGAN 0.7107 0.9258 3.7158
SSMGAN 0.8041 0.8592 3.0993

DCAE 0.7956 0.9242 3.4302
DCAE (Improved) 0.8065 0.9177 3.4110

LPCNet 0.8045 0.8219 2.9151

Table 1. Average objective scores. Higher scores are better for STOI
and POLQA and lower scores are better for WARP-Q. Confidence
intervals are negligible

compared to a simple U-Net architecture. Comparing the SSMGAN
with the PostGAN highlights the benefit of the additional informa-
tion i.e. coded speech which helps in mitigating the artefacts caused
by mismatch of pitch.

The second part of the test compares the proposed PostGAN
with LPCNet, Mask-based post-filter and LC3 (16 kbps). From these
results, we can conclude that: 1) LPCNet is suboptimal when oper-
ated just on the coded speech without access to the bitstream. 2)
PostGAN successfully enhances the quality of coded speech and is
better on average than the mask-based post-filter. However, like rest
of the generative models, generalization to unseen speakers and lan-
guages is still problematic and is an area that needs to be addressed
in future.

3.5. Objective Tests

Objective measures such as POLQA [24], WARP-Q [25] and
STOI [26] are used to compare our proposed PostGAN with the
baseline models. The obtained results are reported in Table 1.
These scores were computed using a test set extracted from VCTK
database comprising 2 speakers (1 male, 1 female) and 824 items.
Since the mask-based post-filter is waveform preservering, the ob-
jective scores seem to prefer this compared to the generative models.
Among the generative models, the proposed PostGAN, performs the

Name Complexity Parameters Delay
(GMACs) (Million) (ms)

Mask-Based 0.8 0.147 32
PostGAN 5.1 2.6 22.5
SSMGAN 4.8 2.77 22.5
LPCNet 1.5 1.24 35
DCAE 3.62 75.45 1024

Table 2. Table comparing PostGAN and baseline models in terms
of Complexity, Number of Parameters and Delay.

best, whereas parametric models such as SSMGAN and LPCNet,
which are non-waveform preserving perform the worst. In addition,
all scores are also computed for the low-pass anchor (LP35). The
scores for the low pass anchor clearly highlight that these objec-
tive scores are not completely reliable and do not fully reflect the
perceived quality, especially for generative models which are non
waveform preserving.

3.6. Complexity

Table 2 compares the proposed PostGAN with baseline models in
terms of complexity, number of parameters and delay. Since mask-
based model is a light-weight model, it has the lowest complexity
and number of parameters compared to other models. However, it
adds an additional delay of 32 ms when operating in conjuntion to
a low-delay codec such as LC3 which operates on a frame size of
10 ms.

Among the generative models, although complexity of DCAE is
comparable to other GAN based models, it is not possible to use it
in a real-time system since it operates on a 1.024 sec frames during
inference. In addition, it requires almost 29x times more param-
eters compared to the proposed model. In contrast, the proposed
PostGAN and SSMGAN operates on 10 ms frames and adds an ad-
ditional delay of 22.5 ms due to the need of computation of mel-
spectogram and PQMF analysis and synthesis allowing the models
to be used in real-time communication. The delay of LPCNet is
35 ms since it operates on 20 ms frames with 50% overlap and uses
2 lookahead frames.

4. CONCLUSION

We propose a GAN-based post-processor called PostGAN that is
backward compatible to existing codecs and can operate in real-time
during inference. It combines the U-Net architecture with a learned
affine transformations, to directly enhance the coded speech in sub-
band domain. For the investigations in the paper, we focused on
mel-spectrogram computed from the coded speech as conditional
features, although the model is flexible enough to be conditioned
with features extracted from either the bitstream or from auxilliary
information passed to the decoder. Our subjective tests and objective
measure show that the proposed solution outperforms prior methods.
In future, further complexity reduction and generalization will be ad-
dressed.
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