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ABSTRACT
The advances in attention-based encoder-decoder (AED) networks
have brought great progress to end-to-end (E2E) automatic speech
recognition (ASR). One way to further improve the performance
of AED-based E2E ASR is to introduce an extra text encoder for
leveraging extensive text data and thus capture more context-aware
linguistic information. However, this approach brings a mismatch
problem between the speech encoder and the text encoder due to
the different units used for modeling. In this paper, we propose an
embedding aligner and modality switch training to better align the
speech and text latent spaces. The embedding aligner is a shared lin-
ear projection between text encoder and speech encoder trained by
masked language modeling (MLM) loss and connectionist tempo-
ral classification (CTC), respectively. The modality switch training
randomly swaps speech and text embeddings based on the forced
alignment result to learn a joint representation space. Experimental
results show that our proposed approach achieves a relative 14% to
19% word error rate (WER) reduction on LIBRISPEECH ASR task.
We further verify its effectiveness on spoken language understand-
ing (SLU), i.e., an absolute 2.5% to 2.8% F1 score improvement on
SNIPS slot filling task.

Index Terms— speech recognition, multi-modality, end-to-end

1. INTRODUCTION

Since the emergence of end-to-end (E2E) models, the automatic
speech recognition (ASR) pipeline has been greatly simplified, and
ASR tasks can be accomplished with a unified model architec-
ture [1, 2]. The most commonly adopted E2E ASR architectures
are attention-based encoder-decoder models [3, 4]. In these mod-
els, the encoder plays an essential role, which converts the acoustic
information to context-aware linguistic features. The decoder then
generates the formal text output based on the linguistic features.

In recent years, many attempts have been made to assist the en-
coder in learning context-aware linguistic information with large text
corpora [5, 6, 7, 8, 9]. An E2E ASR model with an extra text encoder
network is a commonly used architecture to integrate more linguistic
information into the ASR encoder. [7] incorporates a smoothed L1
loss with a multi-stage training scheme and trains the text encoder
and speech encoder to match their output to each other, pushing the
speech embeddings closer to the text embedding space.

Instead of casting explicit constraints, in [5], the text encoder
shares part of its layers with the speech encoder and is trained on
large text corpora with an extra text denoising autoencoder task. Un-
der this multi-task framework, the shared encoder is capable of en-
coding both speech and text embedding from their corresponding
∗Work done during an internship at Microsoft.

encoder, mitigating the mismatch between the embedding from the
shared encoder and text decoder. [6] examins different synthetic in-
put generation schemes for text data and concludes that repeating
phoneme input by their relative duration to each other achieves the
best performance. Rather than introducing another encoder for text
data, [10] utilizes traditional acoustic and language modeling tech-
niques in hybrid systems. An acoustic-to-phoneme module and a
phoneme-to-word module are trained separately but decoded in an
E2E fashion. [11, 12, 13] adopt text-to-speech (TTS) technique to
utilize the extensive text corpora to generate labeled speech and im-
prove the generalization ability of ASR models without a modifica-
tion to the model structure.

Following previous work, we also leverage an extra text encoder
network to learn contextual representations from a large text corpus
in this paper. While the framework is similar to the multi-modality
framework used in [5], we propose an embedding aligner to reduce
the mismatch between speech and text embeddings, which was not
considered in these earlier studies. Under this refined framework, the
text encoder trained with MLM target becomes a simplified phoneme
bert [14], injecting phoneme information into the embedding aligner.
The speech encoder trained with phoneme CTC target learns from
the aligner and encodes speech into embeddings that are easier to
align with those from the text decoder. Meanwhile, dot product
is replaced with Euclidean distance to calculate the pairwise dis-
tance between input embedding and embedding aligner for making
the embeddings from speech and text further closer. [6] only took
advantage of the extensive text data and the text encoder to mimic
speech input for data augmentation. [7] performed experiments un-
der a low-resource setup and adopted a different target to enforce
the speech-language alignment. Inspired by the code-switch meth-
ods in machine translation [15, 16] for better alignment, we extend
it to a modality switch training (MST) method to swap speech and
text embedding for enhancing speech-text alignment in ASR train-
ing, based on the forced alignment result. We conduct experiments
on LIBRISPEECH ASR tasks and SNIPS slot filling (SF) task of spo-
ken language understanding (SLU). The experimental results from
both tasks show our proposed methods are promising.

Our contributions can be summarized as: 1) We propose an
embedding aligner method to explicitly align the speech and text
hidden spaces by sharing the same weights optimized by both the
MLM and CTC losses; 2) Euclidean distance is employed to make
the speech and language spaces tied closer; 3) A modality switch
training (MST) method is proposed to fuse the embeddings gener-
ated from speech and text encoders to enhance the alignment be-
tween them; 4) The effectiveness of our proposed methods has been
demonstrated on both ASR and SLU tasks, i.e., significantly reduce
the WER of ASR on LIBRISPEECH and improve the F1 score of SF
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Fig. 1: The proposed framework to enhance the speech-text embedding alignment. The left part shows the overall structure of the framework.
We adopt joint CTC-attention multi-task loss in the decoder side and attach our proposed alignment loss on the encoder side. The right part
shows the details of the encoders and the embedding aligner. We calculate the pairwise distance between embeddings from two encoders and
the embedding aligner. The output logits are used for MLM and CTC target computation. Two pairwise distance metrics are compared: (1)
Dot product (2) Euclidean distance.

on SNIPS.

2. METHODOLOGY

The whole network structure is illustrated in the left part of Fig. 1.
For the speech input, an audio encoder is used to extract speech em-
beddings, and the shared encoder is used to learn context-aware lin-
guistic features, followed by a decoder to generate the ASR output.
For the text data, the masked text input is processed with the text
encoder, the shared encoder and the shared decoder to recover the
original text data. To deal with the mismatch problem between the
audio encoder and the text encoder, in this section, we introduce two
approaches, the embedding aligner, and the modality switch training,
to explicitly align the hidden spaces of speech and text.

2.1. Embedding Aligner
As shown in the right part of Fig.1, we trained the text encoder with
MLM target and the speech encoder with CTC targe on a text corpus.
To extract linguistic information from phoneme sequences and to
model acoustic information with phoneme tokens, both MLM and
CTC targets adopt phoneme representations of text sequences.

The embedding aligner is a linear projection shared between
MLM and CTC targets, which is used for calculating the logits in the
softmax layer. Denote the dimension of speech and text embedding
as D and the size of the phoneme dictionary as N . The embedding
aligner is denoted asA (A ∈ RD×N ), representing the learnable em-
bedding for each entrance in the phoneme dictionary. To deal with
the length mismatch between speech and text, we model phoneme
relative duration by Rep-Phonestream [6], and repeat phonemes by
their relative duration to each other. Denote P = (p1, p2, · · · , pn)
as the phoneme representation of a text sequence with n phoneme
tokens, where 20% of the phonemes are randomly replaced with
<mask> symbols. After repeating phonemes, we have Prep =
(p1, · · · , p1, p2, · · · , p2, pn, · · · , pn), whose length is denoted as
n′. The phoneme MLM target can be calculated as:

Embp = Text-Encoder(Prep) (1)

P̂ = Softmax(Ep ·A) (2)

LMLM = MLMLoss(P̂ , P ) (3)

where Embp is the embedding of P extracted by text encoder. De-
note X = (x1, x2, · · · , xm) as the acoustic features of a speech

sample with m frames. Its corresponding phoneme transcripts is de-
noted as Y = (y1, y2, · · · , yk). The phoneme CTC target can be
calculated as:

Embx = Speech-Encoder(X) (4)

Ŷ = Softmax(Ex ·A) (5)

LCTC = CTCLoss(Ŷ , Y ) (6)

where Embx is the embedding of X extracted by speech encoder.
Note that in Eq.(2) and Eq.(5), the logits in the softmax layer is cal-
culated as the pairwise dot product distance between the input em-
bedding and each entrance of the embedding aligner. We replace
the dot product distance with euclidean distance to cast a stronger
restriction on the pairwise distance between input embedding and
embedding aligner in both direction and scale. Concretely, Eq.(2)
and Eq.(5) are rewritten as:

P̂ = Softmax(Pairwise-Euclidean(Ep, A)) (7)

Ŷ = Softmax(Pairwise-Euclidean(Ex, A)) (8)

It should be noted that, P̂ and Ŷ share the same weight A, and the
two objectives LMLM and LCTC try to push both the hidden states
Ep and Ex to A. The loss of embedding aligner becomes:

Lalign = LMLM + LCTC (9)

Both dot product and Euclidean distance can measure the simi-
larity between two vectors. These two similarity measurements are
equivalent if the vectors are unit-length, but the dot product is pro-
portional to the vector length. We conducted experiments with dot
product and length normalization for the embeddings Ep and Ex,
but cannot get any promising improvement.

For the decoder part, we adopt a joint CTC attention training
framework in [4] and subwords as modeling units for text [17] de-
noted as L′joint. Note that this multitask target is applied for both
paired speech data and unpaired text data. Combining encoder and
decoder, the loss under our proposed framework is:

L = αLalign + (1− α)L′joint (10)

where α is the weight of the embedding alignment loss.



2.2. Modality Switch Training

Aligning the embedding space of input and output sequence by ran-
domly replacing input tokens with their corresponding output to-
kens has been proved effective in multi-lingual machine translation
[15, 16]. The success of this approach in machine translation can be
ascribed to two reasons: (1) The input and output spaces are dis-
crete and share the same token list, which reduces the mismatch
between the embeddings of source and target languages. (2) Most
input and output tokens correspond one by one. Thus the replace-
ment won’t make a big difference in sequence length. Regarding the
ASR tasks, for the first one, the mismatch between input and output
spaces can be minimized by our proposed embedding aligner. For
the second, given a pair of speech and phoneme sequences, we re-
peat each phoneme by its duration according to the force alignment
results, and generate a new phoneme sequence whose length is ex-
actly the same as speech frames. We compare two strategies regard-
ing the swapping methods: phoneme-unaware and phoneme-aware,
as illustrated in Fig.2:

Text  
Embedding

Audio  
Embedding

Phoneme Aware Swapping Phoneme Unaware Swapping

Fig. 2: Modality switch training with phoneme aware and phoneme
unaware strategy: (1) phoneme-aware: embedding swapping is per-
formed on spans of frames that correspond to the same phoneme
token in forced alignment. (2) phoneme-unaware: random frames
are selected to perform the embedding swapping regardless of their
correspondence to phonemes. MST is only applied when training
the model on speech data with transcription, where the transcripts
are used as inputs for the text encoder. 10% of phonemes or frames
are randomly selected for MST.

3. EXPERIMENTS

3.1. Experiment Setup

3.1.1. ASR task

ASR experiments are carried out on 960 hours of LIBRISPEECH
dataset and a text corpus, which contains 14500 public domain books
and comes with LIBRISPEECH for language model training. We
adopt 10 layers of speech encoder, 4 layers of text encoder, 2 lay-
ers of shared encoder and 6 layers of the decoder with 2048 hid-
den units. Each layer is a Transformer block with 8 heads of 64
dimension self-attention layer [18]. For multitask learning (MTL),
the weight for CTC and attention is set to 0.3 and 0.7. We use an 80-
dimensional log Mel-filterbank with 25ms window length computed
every 10ms as inputs of speech encoder. Spec-augment with policy
LD [19] is applied during training. The model is trained on both un-
paired text data and pair speech data alternately for each batch. The
Adam [20] optimizer is adopted with 0.001 initial learning rate and
20,000 warmup steps. All models are trained until convergence.

For the text encoder, the input is position-dependent phonemes
generated with Rep-Phonestream strategy for the text corpus. The
force alignment results obtained from the TDNN chain model in
Kaldi [21, 22] are used as inputs to text encoder for transcripts of
LIBRISPEECH audios. And the relative duration of phoneme esti-
mated from the force alignment results for speech data are used to

repeat phonemes in unpaired text data. We use the official LIB-
RISPEECH lexicon to perform grapheme-to-phoneme transduction
(G2P). There are over 300 position-dependent phonemes in the
phoneme dictionary. The number of modeling units (BPE) for text
sequence in the decoder is 10,000 [17]. Experiments are carried out
with ESPnets toolkit [23].

3.1.2. SLU task

SLU experiments are carried out on SNIPS dataset and perform a
slot filling (SF) task. We employ the same data split as in Audio
SNIPS corpus, which contains synthesized multi-speaker utterances
for SNIPS and was used for SF task in SUPERB Benchmark [24].
The SF task requires a model to extract slot type and slot value pairs
directly from speech inputs. The SF task here is reformulated as
a sequence-to-sequence problem by predicting a sequence in which
the slot value is surrounded by slot type boundaries. For example, a
slot value and slot type pair “served dish : maple syrup” is converted
to “B-served dish maple syrup E-served dish”. We also follow SU-
PERB to use Character Error Rate (CER) for slot value and F1 score
for slot type to evaluate the performance of SF task. We adopt Trans-
former with 12 layers of encoder and 2 layers of decoders for SLU
task. The CTC weight in MTL is set to zero in this task.

3.2. Experiment Results and analysis
The ASR performance for different system setups is shown in Table
1. It also lists the performance of reference systems from [5], which
leveraged text data in a multi-modality transformer framework. We
reproduced the results in [5] and used them as our baseline systems.
Note that the joint-CTC-attention framework was not adopted in [5]
since the text outputs modeled with subword units were not neces-
sarily shorter than the text inputs modeled with phoneme units. We
repeated the phoneme inputs to similar lengths as speech inputs, en-
abling the application of an extra CTC loss on the decoder side. The
corresponding WERs are shown in the second row and fifth row. We
got the same findings as those reported in [5], i.e., adding a text
encoder trained with the phoneme inputs is beneficial to ASR per-
formance and the number of shared layers between audio encoder
and text encoder plays a marginal impact on WER.

3.2.1. Embedding aligner

The effectiveness of our proposed embedding aligner is shown in
the bottom part of Table 1. Embedding aligner can improve the
ASR performance by relative 1.3% to 11.4% WER reductions on
different evaluation sets. In addition, replacing the dot product with
Euclidean distance as the similarity measurement among the embed-
dings from both encoders and the embedding aligner can further im-
prove the performance by a relative 3.6% WER reduction, averaged
over four evaluation sets. We observe that the relative improvement
on clean sets is larger than on other sets. A possible explanation
is that the matched condition between training and testing on the
clean set makes the speech encoder relatively easy to generate em-
beddings closer to its correct entrance of the embedding aligner, and
vice versa.

3.2.2. Modality switch training

We compared the phoneme-aware and phoneme-unaware strategies
of MST. The results are shown in the last two rows of Table 1.
Phoneme-unaware MST did not improve the performance. One pos-
sible reason is that among a span of frames that corresponds to the
same phoneme, only a few frames were replaced by the text embed-
dings. Thus the encoder was still able to utilize speech embedding



Multi-Modal
Num of Shared Layers Embedding Aligner

Modality Switch Training
Dev Test

in Encoder (Distance Metrics) clean other clean other

7 [5] N/A N/A N/A 3.5 8.1 3.7 8.1

7 N/A N/A N/A 3.3 8.0 3.6 8.0

3 [5] 6 N/A N/A 3.0 7.4 3.3 7.6

3 [5] 0 N/A N/A 3.0 7.4 - -

3 2 N/A N/A 3.1 7.6 3.5 7.3

3 2 Dot Product N/A 2.9 7.2 3.1 7.2

3 2 Euclidean N/A 2.7 7.1 3.0 7.0

3 4 Euclidean N/A 2.7 7.2 2.9 7.0

3 2 Euclidean Phoneme Unaware 2.8 7.1 3.1 6.9

3 2 Euclidean Phoneme Aware 2.7 6.9 2.9 6.8

Table 1: Performance comparison (WER%) of different setups

from other frames to perform the phoneme recognition. Under such
circumstances, phone-unaware MST has similar effects as the time-
warp strategy in spec-augment, which has already been employed in
our system. With phoneme-aware MST, the encoder must learn to
use text embeddings of the entire span of frames that corresponds
to the selected phoneme to reconstruct the phoneme. The phoneme-
aware MST is similar to the semantic mask proposed in [25] except
that the masked embeddings are substituted with corresponding text
embeddings. Therefore, the phoneme-aware MST can further im-
prove the robustness of the embedding alignment and obtain a slight
improvement on both dev-other and test-other sets.

3.2.3. Text data usage

Since in our system, text data for training LIBRISPEECH LM was
used as multi-modality input, for a fair comparison, we further con-
ducted experiments that trained an LM on the same text data and
applied shallow fusion with a single-modality ASR model. The re-
sults are shown in Table 2. It indicates that utilizing the text data to
train an embedding aligner that optimizes the speech-text alignment
on the encoder side yields better results than a shallow fusion with
LM trained on the same text data on the decoder side. It also shows
that our proposed method of using text data is complementary to LM
shallow fusion, and the performance of the multi-modality trained
model can be further improved by LM rescoring.

System Dev Test
clean other clean other

Single-Modal 3.3 8.0 3.6 8.0
Single-Modal + LM 3.2 7.7 3.4 7.4
Multi-Modal 2.7 6.9 2.9 6.8
Multi-Modal + LM 2.6 6.6 2.9 6.6

Table 2: Comparison between LM and multi-modal training

3.2.4. Slot filling task

To validate that the encoder trained under our proposed framework
is richer in text information. We set up experiments on the SF task of
SLU, and the results are shown in Table.3. It shows the CERs of slot
value and the F1s of slot type for the sequences generated by a trans-
former trained from scratch or the encoders of the transformer ini-

tialized by the parameters from a pretrained transformer on ASR task
with single or multiple modalities. We use the encoder of a single
modality transformer trained on LIBRISPEECH dataset for initializa-
tion, which is exactly the model for the approach named transformer
from scratch in Table 3. A significant improvement can be observed
by pretraining the transformer encoder on a larger speech corpus.
Initialization with multi-modality ASR model can yield a consistent
improvement over that with single modality on SF task in both valid
and test sets. With decoder initialization, the performance can be
further improved. SF performance we achieved is comparable with
those reported in [24], which leveraged much larger size unlabeled
data to get better-generalized representations for SLU.

Initialization Valid Test
CER F1 CER F1

Transformer from scratch 55.80 67.30 57.91 67.14
Transformer Single Init Enc 33.03 90.01 32.85 89.35
Transformer Multi Init Enc 27.91 92.83 26.03 91.80

+ Multi Init Dec 25.77 94.29 25.01 92.85

Table 3: Comparison between different initialization approaches on
SNIPS slot filling task.

4. CONCLUSIONS

In this paper, we propose two approaches to optimize the alignment
of the speech and language latent spaces under the multi-modality
E2E ASR framework. We introduce a learnable embedding aligner,
which is a shared linear projection between text encoder and speech
encoder trained by MLM loss and CTC at phoneme level, respec-
tively. The speech and text embeddings are expected to be pushed
closer to the same latent space by the embedding aligner. We further
enhance the speech-text embedding alignment with modality switch
training, which randomly swaps speech and text embeddings based
on the forced alignment results. Phoneme aware and phoneme un-
aware strategies are compared for MST. Finally, we validated that the
semantic information is injected into the speech embeddings with
our proposed approach by conducting experiments on SF task of
SLU. Experiments show that our proposed method achieves a rel-
ative 14% to 19% WER reduction on LIBRISPEECH ASR task and
an absolute 2.5% to 2.8% F1 score improvement on SNIPS SF task.
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