
ar
X

iv
:2

20
1.

10
19

0v
1

 [
ee

ss
.A

S]
 2

5
Ja

n
20

22

RUN-AND-BACK STITCH SEARCH: NOVEL BLOCK SYNCHRONOUS DECODING FOR
STREAMING ENCODER-DECODER ASR

Emiru Tsunoo⋆ Chaitanya Narisetty† Michael Hentschel⋆ Yosuke Kashiwagi⋆ Shinji Watanabe†

⋆ Sony Group Corporation, Japan
† Carnegie Mellon University, USA

ABSTRACT

A streaming style inference of encoder–decoder automatic speech

recognition (ASR) systems is important for reducing latency, which

is essential for interactive use cases. To this end, we propose a novel

blockwise synchronous decoding algorithm with a hybrid approach

that combines endpoint prediction and endpoint post-determination.

In the endpoint prediction, we compute the expectation of the num-

ber of tokens that are yet to be emitted in the encoder features of

the current blocks using the CTC posterior. Based on the expec-

tation value, the decoder predicts the endpoint to realize continu-

ous block synchronization, as a running stitch. Meanwhile, end-

point post-determination probabilistically detects backward jump of

the source–target attention, which is caused by the misprediction of

endpoints. Then it resumes decoding by discarding those hypothe-

ses, as back stitch. We combine these methods into a hybrid ap-

proach, namely run-and-back stitch search, which reduces the com-

putational cost and latency. Evaluations of various ASR tasks show

the efficiency of our proposed decoding algorithm, which achieves a

latency reduction, for instance in the Librispeech test set from 1487

ms to 821 ms at the 90th percentile, while maintaining a high recog-

nition accuracy.

Index Terms— Streaming automatic speech recognition (ASR),

encoder–decoder, end-to-end, Transformer, CTC

1. INTRODUCTION

In recent years, end-to-end automatic speech recognition (ASR) has

garnered significant attention. For interactive use cases in particular,

streaming style inference is essential; thus, several approaches have

been discovered for both the encoder–decoder (Enc–Dec) [1, 2, 3]

and transducer models [4, 5]. Blockwise processing can be eas-

ily introduced to the encoders of both models [6, 7, 8, 9, 10]. Al-

though transducers are efficient for streaming ASR owing to frame-

synchronous decoding, they are less accurate than Enc–Dec [11] and

Enc–Dec can be used additionally to achieve higher performance

[12]. However, during blockwise Enc–Dec inference, it is still chal-

lenging for the decoder to know when to stop decoding, that is, end-

points with limited encoder features in the currently given blocks.

Several studies on streaming Enc–Dec ASR have introduced ad-

ditional training or modules to predict endpoints. By predicting end-

points, the decoder realizes continuous block synchronization with

the encoder, which we refer to as the running stitch approach. Mono-

tonic chunkwise attention (MoChA) [13] is a popular approach for

achieving online processing [6, 14, 15]. However, it makes training

complicated and sometimes degrades accuracy [14, 15]. A triggered

attention mechanism [7] and its modification with a scout network

[16] are further methods for predicting the endpoints, but they also

require additional modules in the network and training criteria.

As an alternative approach, block synchronization with the en-

coder can also be established by examining the tendency of hypothe-

ses that exceed the endpoint [17, 18]. If an exceeded hypothesis

is detected, the decoder turns back to the previous hypotheses and

restarts the beam search with the subsequent encoder features, which

we refer to as a back stitch approach. Tian et. al. trained the model to

emit 〈eos〉 tokens when the decoder exceeded endpoints [17]. In our

previous work, we revealed that detecting only 〈eos〉 is insufficient

for some ASR tasks, and showed that it is also necessary to detect

repeated tokens during decoding [18]. This method achieved bet-

ter performance than most running-stitch approaches, and it did not

require any additional training. However, hypotheses might be dis-

carded during decoding and latency can become large, particularly

for long utterances because there are real token repetitions.

In this study, we propose a novel blockwise synchronous decod-

ing algorithm that does not require any additional training, with a

hybrid approach combining endpoint prediction and endpoint post-

determination, namely the run-and-back stitch (RABS) search. To

realize endpoint prediction, the CTC posterior and source–target

(ST) attention of the decoder within the CTC/attention framework

[3] are used. We compute the expectation of the number of tokens

to be emitted in the current encoder output blocks to predict the

endpoint. We recover a possible misprediction of this endpoint us-

ing the post-determination approach. To achieve this, we explicitly

compute the probability of a backward jump in the ST attention to

improve on our previous repeated phrase detection. By combining

the running stitch and backward stitch in the hybrid RABS search,

we can reduce the computational cost and latency. Experiments on

the Librispeech English, AISHELL-1 Mandarin, and CSJ Japanese

tasks demonstrate that the proposed RABS search achieves a reduc-

tion in latency without significant degradation in word error rates

(WERs). We particularly reduce the 90th percentile latency, in the

Librispeech test set for instance, from 1487 ms to 821 ms.

2. STREAMING ENCODER-DECODER ASR

To realize a streaming Enc–Dec ASR system, both the encoder and

decoder must be processed online synchronously. A simple way to

process the encoder online is through blockwise computation, as in

[6, 7, 8]. However, the global channel, speaker, and linguistic con-

text are also important for local phoneme classification. Therefore, a

context inheritance mechanism for block processing was proposed in

[9, 10] by introducing an additional context embedding vector in the

encoder. Thus, the encoder sequentially computes encoded features

h1:Tb
from the currently given b block input x1:Tb

.

The synchronous decoding in this work bases on the Trans-

former architecture proposed in [18]. The decoder predicts the

probability of the subsequent character from the previous output

http://arxiv.org/abs/2201.10190v1

(a) ST attention of running stitch search. The
decoder repeats a sequence after approximately
hypothesis 900.

(b) ST attention of block synchronous beam
search. The decoder struggles after approx-
imately hypothesis 400, whereas the encoder
proceeds forward.

(c) ST attention of run-and-back stitch search.
The attention is synchronously aligned to the
blockwise encoder.

Fig. 1: Examples of ST attentions.

CTC

Posterior

Attention

weights

_IN
_IS
_IT

<blk>

for

for

for

Fig. 2: Endpoint prediction by expecting the number of tokens in the

encoded features using a CTC posterior and a ST attention.

characters y0:i−1 and the current encoder output blocks h1:Tb
, as

p(yi|y0:i−1,h1:Tb
) = Dec(y0:i−1,h1:Tb

). (1)

Self-attention in the decoder attends to the output history, y0:i−1,

and the subsequent ST attention is directed to the encoder output

sequence, h1:Tb
. In addition to the Enc–Dec Transformer, a linear

layer is added to the encoder to project h1:Tb
onto the token proba-

bility for CTC, which is jointly trained as in [3].

3. RABS DECODING SEARCH

3.1. Running stitch approach: endpoint prediction with CTC

posterior

Endpoint prediction realizes continuous and efficient block synchro-

nization. It would be a trivial problem to predict endpoints if the

system knows the number of tokens to be emitted from the given

limited partial encoder features; the decoder should only stop after a

specific number of tokens are decoded. However, because the length

of the input sequence and that of the output sequence differ and de-

pend on token granularity, the number of tokens in the encoded fea-

tures is unknown. Although most studies introduce an additional

endpoint predictor into the ASR model [6, 7, 13], we predict end-

points without additional training or modules, within the standard

CTC/attention architecture. We compute an expectation value of the

number of tokens following the currently attending time frame in the

currently given encoded blocks. The expectation value is calculated

by combining a CTC posterior and an ST attention.

CTC computes a frame-wise token emission posterior, including

a blank label. Let pctct (y|h1:Tb
) be a CTC posterior of frame t given

encoded block h1:Tb
, as shown in Fig. 2. In CTC, the same consecu-

tive tokens are merged, and only the tokens transiting from the other

tokens or the blank token are counted. Because the probability of the

previous token not being y is 1 − pctct−1(y|h1:Tb
), the probability of

emitting token y in frame t is described as follows:

ey(t) =
(

1− p
ctc
t−1(y|h1:Tb

)
)

· pctct (y|h1:Tb
) (2)

Let Nemit
b (t) be the remaining number of all the tokens except for

the blank to be emitted from the encoded features h1:Tb
after frame

t. The number can be expressed as an accumulation of the token

emission probability (2) as follows:

N
emit
b (t) =

Tb−t
∑

τ=1

∑

y 6=〈blk〉

ey(t+ τ) (3)

In the case of Fig. 2, to compute the number of tokens after t = 5, all

the posterior except for the blank in the yellow box is accumulated

for Nemit
b (t = 5). Nemit

b (t) is shown as the blue graph in Fig 2.

We use ST attention to know the time frame currently attended

to. An averaged attention weight for the current hypothesis can be

computed from ST attention as follows:

ai(t) =

M
∑

m=1

softmax

(

qm,i−1km,t√
d

)

, (4)

where qm,i−1 denotes the query value of the last output in the hy-

pothesis, yi−1, km,t is the key value of encoded frame t and of multi-

head m of M heads, and d is the dimensionality of both vectors.

In Transformer, the ST attention of each head is not always mono-

tonic or aligned, because of the multi-head and residual connections.

However, empirically, we found that the ST attention of the last de-

coder layer tends to be monotonic. Thus, we compute the expecta-

tion of the remaining number of tokens after currently attending time

frame as follows:

E[Nemit
b]i =

Tb
∑

t=1

ai(t)N
emit
b (t) (5)

As shown as the green graph in Fig. 2, the expectation values

E[Nemit
b]i decrease step by step. If E[Nemit

b]i is less than the pre-

defined threshold ν, we assume that current decoding step i reaches

an endpoint of the current b blocks, and the decoder stops until the

encoder outputs the next block hTb+1:Tb+1
.

3.2. Back stitch approach: endpoint post-determination

3.2.1. Block synchronous beam search

CTC and ST attention are not explicitly trained to be aligned; thus,

the aforementioned endpoint prediction can cause some errors.

Fig. 1a shows an example of ST attention of endpoint prediction

search. The horizontal axis denotes the encoder frame and the

vertical axis indicates the hypothesis number. In the earlier hy-

potheses, the decoder uses only the limited encoded features, e.g.,

h1:T5
= h1:96 for hypothesis 200. In this example, the ST attention

jumps back and the decoder repeats a sequence after approximately

hypothesis 900. The endpoint post-determination can recover such

error. For this purpose, block synchronous (BS) beam search [18]

can be applied, in which the repeated tokens are considered as well

as 〈eos〉 to evaluate the excess of the endpoints. Detecting such

tokens in the hypotheses is regarded as signs of exceeding the end-

point, and thus, we discard the hypotheses containing such tokens

and resume decoding after the next block is encoded.

Fig. 1b shows an example of ST attention in the BS search,

which shows another problem caused by repeated token detection.

The decoder struggles after hypothesis 400, whereas the encoder

proceeds forward. After the encoder reaches the end of the utterance

at approximately hypothesis 1000, the decoder consumes all the re-

maining encoded features, which adversely impacts the latency. This

particularly occurs in long utterances because there are several real

token repetitions, which make the decoder discard hypotheses falsely

and be left behind by the encoder. In this study, we improve the BS

search by explicitly evaluating ST attention to find the back-jump

phenomenon in Fig. 1a.

3.2.2. Attention back jump detection

When the back-jump phenomenon occurs, the peak of the current

ST attention focuses on encoder features prior to the last decoded

hypothesis. Thus, the probability of the attention back jump, p
jump

i,b ,

is calculated by accumulating all the ST attention that is concentrated

behind the previous attention, as follows.

p
jump

i,b =

Tb
∑

t=1

ai(t)

(

Tb−t
∑

τ=1

ai−1(t+ τ)

)

(6)

If the back jump probability is greater than a threshold, that is,

p
jump

i,b > υ, the current hypotheses ending with yi are regarded as a

repeated sequence and discarded. The decoder stops until the next

block hTb+1:Tb+1
is encoded.

3.3. Hybrid RABS beam search

To realize efficient yet accurate ASR decoding, we propose to com-

bine the endpoint predictor using CTC posterior and the endpoint

post-determination with attention back jump detection. The pro-

posed hybrid beam search algorithm, namely RABS search, is sum-

marized in Algorithm 1. In every beam search step, first, 〈eos〉 and

back jump probability of ST attention are evaluated in the current hy-

potheses (line 6). If 〈eos〉 is found in the hypotheses or p
jump

i,b > υ,

the decoder is considered to exceed the endpoint and stops decoding

until the next block hTb+1:Tb+1
to be encoded. Subsequently, end-

point prediction is performed by evaluating the expectation of the

remaining number of tokens to be emitted, as in (5), with a CTC

posterior and a ST attention (line 14). An example of ST attention in

the proposed RABS search is shown in Fig. 1c in which the attention

of the decoder proceeds synchronously with the encoder.

Algorithm 1 Hybrid run-and-back stitch beam search

Input: encoder feature blocks h, total block number B, beam width K , max
output length Imax

Output: Ω̂: complete hypotheses
1: Initialize: y0 ← 〈sos〉, Ω0 ← {y0}, b← 1, i← 1
2: while b < B do

3: NextBlock← false
4: Ωi ← SearchK(Ωi−1,h1:Tb

)
5: for y0:i ∈ Ωi do

6: if yi = 〈eos〉 or p
jump

i,b
> υ then ⊲ back-stitch search

7: NextBlock← true
8: end if

9: end for

10: if NextBlock then

11: b← b+ 1 ⊲ discard current hypotheses and wait for the next
block

12: else

13: if E[Nemit
b

]i < ν then ⊲ running-stitch search

14: b← b+ 1 ⊲ wait for the next block
15: end if
16: i← i+ 1
17: end if

18: end while

19: while i < Imax unless EndingCriterion(Ωi−1) do ⊲ ordinary

decoding follows to obtain Ω̂ after b = B
20: Ωi ← SearchK(Ωi−1,h1:TB

)
21: for y0:i ∈ Ωi do

22: if yi = 〈eos〉 then

23: Ω̂← Ω̂ ∪ y0:i

24: end if

25: end for

26: end while

27: return Ω̂

4. EXPERIMENTS

4.1. Experimental Setup

We conducted experiments using the English LibriSpeech dataset

[21], AISHELL-1 [22] Mandarin tasks, and the Japanese CSJ dataset

[23]. The input acoustic features were 80-dimensional filter bank

features and the pitch. Regular, small, and large models were trained

using multitask learning with CTC loss as in [3] with a weight of

0.3. We used the Adam optimizer and Noam learning rate decay,

and applied SpecAugment [24].

We adopted contextual block processing with a Transformer en-

coder, following [18]. For the regular and small models, we trained

a 12-layer encoder with 2048 units, d = 256 of the hidden dimen-

sion size, and M = 4 multihead attention. The large model was

trained with d = 512 and M = 8 and used HuBERT [25] features 1

pretrained on Libri-light [26].

The decoder had six layers with 2048 units for the regular and

large models, and two layers for the small model. The parameters

for the ordinary (batch) decoder were directly used in the proposed

hybrid RABS algorithm of the decoder. We set the parameters for

the RABS search as ν = 1.0 and υ = 0.5.

The real-time factor (RTF) and latency were measured with our

implementation of the proposed search algorithm in C++, using a

subset of each task with a beam size of 10. We only evaluated

regular and small models because we did not implement the large

model with HuBERT in C++. We adopted EP latency, following

[20], which is the time required to emit 〈eos〉 token after the end of

each utterance. The 50th and 90th percentile latencies are shown.

1We used causal feaures for decoding.

Table 1: WERs and computation efficiency in the LibriSpeech task. (∗: There is no description of the beam size in the literature. †: The EPs

were evaluated on a different dataset and by simulation without considering computation time.)

Beam 30 Beam 10 RTF Latency Avg. last

test-clean test-other test-clean test-other EP50 EP90 steps

Triggered Attention [7] 2.8 7.3 — — — — — —

HS-DACS [19] 2.7 6.6 — — — — — —

Scout Network [16] — — 2.7 6.4 — — — —

Emformer Transducer (pretrained in hybrid ASR) [10] — — 2.4∗ 6.1∗ — — — —

FastEmit Conformer Transducer [20] — — 3.5∗ 9.1∗ — 290† ms 660† ms —

Regular model (6-layer decoder with d = 256 and M = 4)

BS-Dec [18] 2.7 7.1 3.0 7.7 0.25 552 ms 1487 ms 7.95

Running-stitch search (Sec. 3.1) 3.0 7.7 3.3 8.5 0.24 349 ms 508 ms 3.09

Back-stitch search (Sec. 3.2) 2.7 7.1 3.0 7.7 0.25 497 ms 919 ms 5.22

RABS search (proposed) 2.8 7.2 3.0 7.8 0.24 491 ms 821 ms 4.71

Small model (2-layer decoder with d = 256 and M = 4)

BS-Dec [18] 2.9 7.5 3.4 8.4 0.15 341 ms 857 ms 8.29

RABS search (proposed) 3.0 7.6 3.4 8.3 0.14 246 ms 354 ms 3.25

Large model (6-layer decoder with d = 512 and M = 8)

HuBERT BS-Dec + Transformer LM 2.2 4.3 2.2 4.4 — — — 12.28

HuBERT RABS search + Transformer LM (proposed) 2.2 4.3 2.3 4.5 — — — 1.52

Table 2: CERs and latency in the AISHELL-1 task

Dev Test EP50 EP90

RNN-T [27] 10.1 11.8 — —

Sync-Transformer (6-layer) [17] 7.9 8.9 — —

HS-DACS [19] 6.2 6.8 — —

BS-Dec [18] 5.8 6.4 439 ms 570 ms

RABS search (proposed) 5.8 6.4 326 ms 471 ms

Table 3: CERs and latency in the CSJ task

eval 1 eval 2 eval 3 EP50 EP90

BS-Dec [18] 5.5 4.2 4.7 978 ms 2616 ms

RABS search (proposed) 5.6 4.2 4.7 582 ms 1079 ms

The RTF and latency were measured with an 8 core 3.60 GHz Intel

i9-9900K processor.

4.2. Librispeech English results

For LibriSpeech, we adopted the byte-pair encoding subword tok-

enization [28], which has 5000 token classes. A language model

(LM) of a four-layer LSTM with 2048 units was fused with a weight

of 0.6 for the regular and small models. For the large model, a 16-

layer Transformer LM was fused as in [18]. CTC weight was set as

0.4. We compare WERs with a beam size of 30 and that of 10. The

running-stitch approach described in Sec. 3.1, the back-stitch ap-

proach described in Sec. 3.2, and their combination, that is, RABS

search (Sec. 3.3), were compared with our previous BS search [18].

We also evaluated the average number of last decoding steps

after the encoder reached the utterance end, that is, the number of

steps after line 19 in Algorithm 1. We desire as few decoding steps

as possible, but if the encoder and decoder are not sufficiently syn-

chronous, as shown in Fig. 1b, the value increases.

The results are listed in Table 1 along with other streaming ap-

proaches with a larger number of parameters [7, 10, 16, 19, 20]. The

results of the regular models show that the running-stitch search is

efficient as RTF and latency decreased, particularly at EP90. How-

ever, WERs increased owing to the CTC posterior and ST attention

misalignment. Back-stitch search successfully decreased the aver-

age number of last steps, by replacing repeated token detection with

the proposed attention back jump probability while maintaining the

WERs of BS search. With the RABS search, we observed a WER re-

duction compared with the running-stitch search because it success-

fully recovered the error by the back-stitch approach. In addition, the

latency of RABS search improved over the back-stitch search, and

the EP90 latency decreased compared with BS search, from 1487

ms to 821 ms. The same tendency can be found in the small model.

In particular, the 10-beam RABS search with the small model was

faster and more accurate than the FastEmit transducer [20]. We also

confirmed that our proposed approach can be applied to the large

model with HuBERT features, which drastically reduced the num-

ber of last steps without significant WER degradation.

4.3. AISHELL-1 Mandarin and CSJ Japanese results

We used the regular model architectures for AISHELL-1 Mandarin

and CSJ Japanese tasks to confirm the effectiveness of our proposed

method in other languages, i.e., in various token granularity. For the

Mandarin task, 4231 character classes were used with parameters

{CTC weight, beam width, LM weight} = {0.5, 10, 0.7}. For CSJ,

the dataset had 3260 Japanese character classes, and parameters were

set as {CTC weight, beam width, LM weight} = {0.3, 10, 0.3}. We

used an external two-layer LSTM LM with 650 units for each tasks.

The results for AISHELL-1 are summarized in Table 2 and

for CSJ are in Table 3. We observed a similar tendency as on

Librispeech; the proposed RABS search reduced latency while

WERs were maintained. In the Mandarin task, we achieved better

performance compared to other streaming methods, such as head-

synchronous decoding (HS-DACS) [19]. We confirmed that our

proposed method is consistently effective in various languages.

5. CONCLUSION

We have proposed a novel blockwise synchronous decoding al-

gorithm for Enc–Dec ASR, called RABS search, which is a hy-

brid approach combining endpoint prediction and endpoint post-

determination. In the endpoint prediction, the expectation of the

number of tokens that are yet to be emitted in the encoder fea-

tures of currently given blocks is calculated. The endpoint post-

determination recovers errors from endpoint misprediction, by

copmputing backward jump probability of the ST attention. The

RABS search successfully combined the advantages of both, reduc-

ing the computational cost and latency, and maintaining accuracy at

the same time.

6. REFERENCES

[1] Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,

Kyunghyun Cho, and Yoshua Bengio, “Attention-based mod-

els for speech recognition,” in Proc. of NIPS, 2015, pp. 577–

585.

[2] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,

“Listen, attend and spell: A neural network for large vocabu-

lary conversational speech recognition,” in Proc. of ICASSP,

2016, pp. 4960–4964.

[3] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R. Hershey,

and Tomoki Hayashi, “Hybrid CTC/attention architecture for

end-to-end speech recognition,” Journal of Selected Topics in

Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

[4] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton,

“Speech recognition with deep recurrent neural networks,” in

Proc. of ICASSP, 2013, pp. 6645–6649.

[5] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar, “Exploring

architectures, data and units for streaming end-to-end speech

recognition with RNN-transducer,” in Proc. of ASRU Work-

shop, 2017, pp. 193–199.

[6] Haoran Miao, Gaofeng Cheng, Zhang Pengyuan, and

Yonghong Yan, “Transformer online CTC/attention end-to-end

speech recognition architecture,” in Proc. of ICASSP, 2020, pp.

6084–6088.

[7] Niko Moritz, Takaaki Hori, and Jonathan Le Roux, “Streaming

automatic speech recognition with the transformer model,” in

Proc. of ICASSP, 2020, pp. 6074–6078.

[8] Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and

Sanjeev Khudanpur, “A time-restricted self-attention layer for

ASR,” in Proc. of ICASSP, 2018, pp. 5874–5878.

[9] Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Kumakura, and

Shinji Watanabe, “Transformer ASR with contextual block

processing,” in Proc. of ASRU Workshop, 2019, pp. 427–433.

[10] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng

Yeh, Julian Chan, Frank Zhang, Duc Le, and Mike Seltzer,

“Emformer: Efficient memory transformer based acoustic

model for low latency streaming speech recognition,” in Proc.

of ICASSP, 2021, pp. 6783–6787.

[11] Jinyu Li, Yu Wu, Yashesh Gaur, Chengyi Wang, Rui Zhao,

and Shujie Liu, “On the comparison of popular end-to-end

models for large scale speech recognition,” arXiv preprint

arXiv:2005.14327, 2020.

[12] Tara N Sainath, Ruoming Pang, David Rybach, Yanzhang

He, Rohit Prabhavalkar, Wei Li, Mirkó Visontai, Qiao Liang,

Trevor Strohman, Yonghui Wu, et al., “Two-pass end-to-end

speech recognition,” in Proc. of Interspeech, 2019, pp. 2773–

2777.

[13] Chung-Cheng Chiu and Colin Raffel, “Monotonic chunkwise

attention,” arXiv preprint arXiv:1712.05382, 2017.

[14] Kwangyoun Kim, Kyungmin Lee, Dhananjaya Gowda, Junmo

Park, Sungsoo Kim, Sichen Jin, Young-Yoon Lee, Jinsu Yeo,

Daehyun Kim, Seokyeong Jung, et al., “Attention based on-

device streaming speech recognition with large speech corpus,”

in Proc. of ASRU Workshop, 2019, pp. 956–963.

[15] Hirofumi Inaguma, Yashesh Gaur, Liang Lu, Jinyu Li, and Yi-

fan Gong, “Minimum latency training strategies for streaming

sequence-to-sequence ASR,” in Proc. of ICASSP, 2020, pp.

6064–6068.

[16] Chengyi Wang, Yu Wu, Liang Lu, Shujie Liu, Jinyu Li, Guoli

Ye, and Ming Zhou, “Low Latency End-to-End Streaming

Speech Recognition with a Scout Network,” in Proc. of In-

terspeech, 2020, pp. 2112–2116.

[17] Zhengkun Tian, Jiangyan Yi, Ye Bai, Jianhua Tao, Shuai

Zhang, and Zhengqi Wen, “Synchronous transformers for end-

to-end speech recognition,” in Proc. of ICASSP, 2020, pp.

7884–7888.

[18] Emiru Tsunoo, Yosuke Kashiwagi, and Shinji Watanabe,

“Streaming transformer asr with blockwise synchronous beam

search,” in 2021 IEEE Spoken Language Technology Workshop

(SLT), 2021, pp. 22–29.

[19] Mohan Li, Cătălin Zorilă, and Rama Doddipatla, “Head-

synchronous decoding for transformer-based streaming ASR,”

in Proc. of ICASSP, 2021, pp. 5909–5913.

[20] Jiahui Yu, Chung-Cheng Chiu, Bo Li, Shuo-yiin Chang, Tara N

Sainath, Yanzhang He, Arun Narayanan, Wei Han, Anmol Gu-

lati, Yonghui Wu, et al., “Fastemit: Low-latency streaming

asr with sequence-level emission regularization,” in Proc. of

ICASSP, 2021, pp. 6004–6008.

[21] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev

Khudanpur, “LibriSpeech: an ASR corpus based on public

domain audio books,” in Proc. of ICASSP, 2015, pp. 5206–

5210.

[22] Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng,

“AIShell-1: An open-source Mandarin speech corpus and a

speech recognition baseline,” in Oriental COCOSDA, 2017,

pp. 1–5.

[23] Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hitoshi Isa-

hara, “Spontaneous speech corpus of Japanese,” in Proc. of the

International Conference on Language Resources and Evalua-

tion (LREC), 2000, pp. 947–9520.

[24] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu,

Barret Zoph, Ekin D Cubuk, and Quoc V Le, “SpecAugment:

A simple data augmentation method for automatic speech

recognition,” in Proc. of Interspeech, 2019.

[25] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,

Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman

Mohamed, “Hubert: Self-supervised speech representation

learning by masked prediction of hidden units,” arXiv preprint

arXiv:2106.07447, 2021.

[26] Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny

Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré, Julien

Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fue-

gen, et al., “Libri-light: A benchmark for ASR with limited or

no supervision,” in Proc. of ICASSP, 2020, pp. 7669–7673.

[27] Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Ye Bai, and Zhengqi

Wen, “Self-attention transducers for end-to-end speech recog-

nition,” in Proc. of Interspeech, 2019, pp. 4395–4399.

[28] Rico Sennrich, Barry Haddow, and Alexandra Birch, “Neural

machine translation of rare words with subword units,” in Proc.

of the Association for Computational Linguistics, 2016, vol. 1,

pp. 1715–1725.

	1 Introduction
	2 Streaming encoder-decoder ASR
	3 RABS decoding search
	3.1 Running stitch approach: endpoint prediction with CTC posterior
	3.2 Back stitch approach: endpoint post-determination
	3.2.1 Block synchronous beam search
	3.2.2 Attention back jump detection

	3.3 Hybrid RABS beam search

	4 Experiments
	4.1 Experimental Setup
	4.2 Librispeech English results
	4.3 AISHELL-1 Mandarin and CSJ Japanese results

	5 Conclusion
	6 References

