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ABSTRACT

When providing the boundary conditions for hydrological
flood models and estimating the associated risk, interpolat-
ing precipitation at very high temporal resolutions (e.g. 5
minutes) is essential not to miss the cause of flooding in
local regions. In this paper, we study optical flow-based in-
terpolation of globally available weather radar images from
satellites. The proposed approach uses deep neural networks
for the interpolation of multiple video frames, while terrain
information is combined with temporarily coarse-grained
precipitation radar observation as inputs for self-supervised
training. An experiment with the Meteonet radar precipitation
dataset for the flood risk simulation in Aude, a department in
Southern France (2018), demonstrated the advantage of the
proposed method over a linear interpolation baseline, with up
to 20% error reduction.

Index Terms— Climate & sustainability, physics-informed
neural networks, spatio-temporal interpolation, satellite re-
mote sensing

1. INTRODUCTION

Satellite observations which can consistently capture broad
areas [1] are unique and effective means to achieve global
scale rainfall measurement [2]. While ground-based rainfall
observation networks using rain gauges [3] or weather radars
provide dense and highly frequent observation such as every
10 minutes, ground observation data is often missing in Asia
and African regions [4, 5] even though these regions suffer
from many water related disasters.

Precipitation is one of the main causes of fatal natural dis-
asters, as it causes flooding, landslides, and snow avalanches
as well as damage to crops. The frequency and severity
of these events is increasing with the increase in extreme
weather events associated with acute climate change. Math-
ematical and computational models such as IFM [6] have
become widely used tools to predict and mitigate risks to
socioeconomic systems. However, for these predictions to be
accurate, the underlying precipitation data driving the simula-
tions have to be well resolved in space and time. Forecasting
precipitation at very high resolutions in space and time, par-
ticularly with the aim of providing the boundary conditions
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Fig. 1. An example task of temporal interpolation of precip-
itation. Given half-hourly snapshots from radar observation,
we produce precipitation snapshots of 5 minutes.

for hydrological models and estimating the associated risk, is
one of the most difficult challenges in meteorology [7].

This paper introduces a temporal precipitation interpola-
tion method based on deep learning and demonstrates how the
temporal resolution of it impacts an actual flood modeling re-
sults. Along with the recent work with deep learning for now-
casting [8] with topographic feature learning [9], our focus is
on the temporal interpolation of precipitation for climate im-
pact modeling. The task definition is illustrated as Figure 1.
The results would be used to calibrate the impact modeling
to be accurate in forecasting the disaster risks in the future,
which is the motivation of the work but out of the scope for
this paper.

To develop our network architecture we used Super-
SloMo [10] (SSM), a multi-frame interpolation neural net-
work, as our base network and applied the following adapta-
tions:

• We used self-supervised learning, specific to the spatio-
temporal precipitation domain, while the original paper
focused on general videos of 240fps for training and
30fps for evaluation input frames.

• We used 3D vectors with an additional intensity (pre-
cipitation) transformation dimension, instead of 2D op-
tical flow vectors.

• We added additional topographical feature integration
channels, including dot products to count “rainy clouds
climbing a hill”.
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For unsupervised multiple video frames interpolation, we
consider SSM as the state-of-the-art optical-flow approach
whereas EpicFlow [11] is one of the “non-deep” state-of-the-
art approaches. Deep Voxel Flow [12], an early UNet-based
(thus “deep”) approach, demonstrated its advantage over
EpicFlow. SSM is an advanced version of Deep Voxel Flow,
demonstrating equal-or-better performance over it with addi-
tional treatment of occlusions, etc.

The rest of this paper first describes the proposed precip-
itation observation interpolation method along with the base
one. Then, experimental results are presented, followed by
some concluding remarks.

2. TEMPORAL PRECIPITATION INTERPOLATION

In this paper we leverage an approach introduced by SSM [10],
a high-quality variable-length multi-frame interpolation method
that can interpolate a video frame at any arbitrary time step
between two frames, amongst many existing works on optical
flow [13, 14]. While the simple application of SuperSloMo to
satellite imagery has been recently studied [15], we extend it
for the purpose of precipitation interpolation and the realistic
availability of supplemental data of geography.

The main idea of the original SSM work is to warp the
two input images to an arbitrary time step and then adaptively
fuse the warped images to generate the intermediate image,
where the motion interpretation and occlusion reasoning are
modeled in a single end-to-end trainable network. Specifi-
cally, they first use a flow computation Convolutional Neu-
ral Network (CNN) to estimate the bi-directional optical flow
between the two input images, which is then linearly fused
to approximate the required intermediate optical flow in order
to warp input images. To avoid poor approximations around
motion boundaries, it uses another flow interpolation CNN
to refine the flow approximations and predict soft visibility
maps [10].

While the experimental results in the SSM paper [10]
use finer-grained training data (240fps) than prediction time
(30fps), the training could have been done with the coarse-
grained by considering intermediate frames in the consecutive
frames or a clip as the interpolation target frames. Also, since
none of the learned network parameters are time-dependent,
it can produce as many intermediate frames as needed.

2.1. Base Intermediate Frame Synthesis

Given two precipitation observation inputs IT ∈ RH×W at
times T = 0 and T = 1, and an intermediate time t ∈
(0, 1), our goal is to predict the intermediate precipitation
Ît ∈ RH×W , at time T = t. With multi-frames video in-
terpolation approaches allowing arbitrary time t ∈ (0, 1) to
interpolate at, such as SuperSloMo, the goal is to explicitly
infer optical flows F0→t and F1→t, which are from I0 to It,
and from I1 to It, respectively.

The goal is then to infer an inferred intermediate frame
derived from a linear combination of warped I0 and I1 as:

Ît = α� g(I0, F0→t) + (1− α)� g(I1, F1→t), (1)

where g is a warping function. The parameter α is a matrix
of scalar weights ∈ [0, 1] for taking the relative importance of
the reference frames into account. � represents element-wise
multiplication.

The backward warping function g implemented using bi-
linear interpolation in SuperSloMo is defined as:

g(i)(I, F ) =
∑

q∈neighbors of(x′(i),y′(i))

I(q)w(q), (2)

where w(q) is a weight, generally used in bilinear interpola-
tion, for reflecting the proximity of a reference grid q from
the sampling location (x′(i), y′(i)) for constructing a grid i. It
is defined using an optical flow F (i) := (∆x(i),∆y(i)) and
the target grid location (x(i), y(i)) as (x′(i), y′(i)) = (x(i) −
∆x(i), y(i) −∆y(i)).

2.2. Intensity Change Consistency

In applications of unsupervised deep optical flow learning,
originally found in [16], the reconstruction and photomet-
ric errors between the warped feature map from the reference
image and the target image is treated as a loss to be back-
propagated. If the level of intensity is not constant, then the
motion estimate can be biased [13].

We introduce an additional dimension in the optical-flow
vectors which represent intensity change. Instead of F =
(∆x,∆y), now we rely on F = (∆x,∆y,∆z), where ∆z
represents the precipitation intensity increase from original
grids. The local consistency term, to be discussed in the fol-
lowing section, is applied to this additional dimension, as well
as the original flow dimensions.

The backward warping function g, originally found in
Equation 2, is modified as:

g(i)(I, F ) =
∑

q∈neighbors of(x′(i),y′(i))

(I(q) + ∆z(q))w(q). (3)

2.3. Topographic Feature Integration

In addition to the precipitation observation, we utilize the to-
pographical elevation map to predict the interpolation, as de-
picted in Figure 2. The entire network contains two U-Nets,
which are fully convolutional neural networks. The first net-
work takes two input images I0 and I1, to jointly predict the
forward optical flow F0→1 and backward optical flow F1→0

between them. The second network then takes warped re-
sults at the target interpolation time t in addition to the input
images, to generate final optical flows and occlusion maps.
We extend the input to the second network with topographi-
cal elevation map. In addition to feeding the map as is, we



also include the feature engineered to represent the collision
of rain cloud and the ground, by a dot-product of flow vector
and terrain gradient.

2.4. Training

Instead of providing supervision for temporally fine-grained
precipitation observation, which is generally difficult in prac-
tice, we train our network using the consequent observations
in the original, low frequent observation of precipitation, say,
consequent half-hourly observations. While SuperSloMo has
been tested with supervision, the design of network itself in-
herently has such a capability of self-supervision.

Given input precipitation frames I0 and I1, an intermedi-
ate frame It between them, where ti ∈ (0, 1), and the pre-
diction of intermediate frames Ît, the loss function in Super-
SloMo is a linear combination of four terms:

l = λrlr + λplp + λwlw + λsls (4)

whereλr, λp, λw and λs are weights for each loss term. They
are samely set as SuperSloMo.

The reconstruction loss lr and the warping loss lw are de-
fined in the same manner as SuperSloMo. A reconstruction
loss models the distance between It and Ît, whereas a warp-
ing loss models the quality of the computed optical flow. The
perceptual loss lp, preserves details of the predictions, how-
ever it is not used in this work as we do not have a pretrained
model for precipitation. For comparison, SuperSloMo used
the VGG16 model for general images.

The smoothness loss ls, is used to encourage neighboring
pixels to have similar flow values as was done in SuperSloMo
and is defined as :

ls = ||∆F0→1||1 + ||∆F1→0||1 (5)

but our flows F0→1 and F1→0 are three dimensional. The
third dimension for intensity change has been introduced as
described before.

3. EXPERIMENTAL RESULTS

While the interpolation was designed to work with the glob-
ally available precipitation data from IMERG1, the actual
experiments and demonstration were conducted based on
Meteonet2 for validating the proposed interpolation with the
ground truth precipitation observation, which is not generally
available globally. Samples extracted for every 30 minutes
from the interpolation target month are used for training.
Every tuple of consequent 3 sampled frames in one hour
(thus the middle frame as the self-supervising target) is given
to a network in a random order. Otherwise we follow the

1https://gpm.nasa.gov/data/imerg
2https://meteonet.umr-cnrm.fr

experimental setting of the original SSM[10] but the train-
ing iteration was stopped at 20 epochs, where we observed
general saturation of performance.

To demonstrate the impact of various precipitation inter-
polation methods in flood simulation with IFM, we selected
an actual flooding event in the past. We select a flooding event
in Aude, France back in October, 2018, which is the only
flash flooding event covered by the Meteonet dataset time and
area. “Several months’ worth of rain fell within a few hours
overnight in Aude, leaving people stranded on rooftops”, ac-
cording to a news article by Sky News. In this event, a num-
ber of areas reportedly experienced flash flooding driven by
heavy rainfall in a short period. This resulted in the need for
high resolution spatio-temporal rainfall information to sup-
port analysis with hydrological models to better understand
what occurred on that night.

With the hypothesis that the ground topography of the
area should have effects on the dynamics of the precipitation,
we utilize a digital elevation model (DEM) released under the
Shuttle Radar Topography Mission (SRTM) [17]. STRM is an
international project aiming to generate high resolution topo-
graphic data globally. Its DEM with a one arc-second (about
30 meters) resolution is publicly available for free. We con-
sider the elevation as a relevant variable and incorporate it as
the additional input layer channels of our interpolation refine-
ment model.

3.1. Preliminary Experiments for Impact Sensitivity

Before looking at interpolation errors, we first confirm the
sensitivity of flooding impact for precipitation input errors.
As a physical hydrological modeling system, we use the In-
tegrated Flood Model (IFM), which offers fine-grained over-
land flood modeling with high scalability [6]. Since precipi-
tation is an input driver for hydrological models such as IFM,
the modeled results are directly affected by variations in the
precipitation data.

Figure 3 shows the simulated flood extents at a single time
stamp 48 hours after the start of the simulation, obtained using
precipitation data from both raw 5 minutes resolution and 60-
to-5 minutes linearly interpolated resolution. The difference
between these two binary maps, as shown on the right, reveals
the difference in flood distribution, demonstrating the sensi-
tivity of the flood model to the precipitation input data. These
results suggest that the difference of the interpolation meth-
ods applied to precipitation that drives hydrological models
has potentially considerable impact to the flood simulation
results, particularly in the case of flash floods that caused by
local heavy rainfalls.

3.2. Interpolation Results

Figure 4 shows the mean absolute errors from the ground truth
precipitation, for each target interpolation time of 5 or 25, 10

https://gpm.nasa.gov/data/imerg
https://meteonet.umr-cnrm.fr
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Figure 4: Network architecture of our approach.

the fourth row of Fig. 3.
In order to do flow interpolation, we need to first com-

pute the bi-directional optical flow between the two input
images. Recent advances in deep learning for optical flow
have demonstrated great potential to leverage deep CNNs to
reliably estimate optical flow. In this paper, we train a flow
computation CNN, taking two input images I0 and I1, to
jointly predict the forward optical flow F0!1 and backward
optical flow F1!0 between them.

Our entire network is summarized in Fig. 4. For the flow
computation and flow interpolation CNNs, we adopt the U-
Net architecture [25]. The U-Net is a fully convolutional
neural network, consisting of an encoder and a decoder,
with skip connections between the encoder and decoder fea-
tures at the same spatial resolution For both networks, we
have 6 hierarchies in the encoder, consisting of two convo-
lutional and one Leaky ReLU (↵=0.1) layers. At the end of
each hierarchy except the last one, an average pooling layer
with a stride of 2 is used to decrease the spatial dimension.
There are 5 hierarchies in the decoder part. At the begin-
ning of each hierarchy, a bilinear upsampling layer is used
to increase the spatial dimension by a factor of 2, followed
by two convolutional and Leaky ReLU layers.

For the flow computation CNN, it is crucial to have large
filters in the first few layers of the encoder to capture long-
range motion. We therefore use 7⇥7 kernels in the first two
convoluional layers and 5 ⇥ 5 in the second hierarchy. For
layers in the rest of entire network, we use 3 ⇥ 3 convolu-
tional kernels. The detailed configuration of the network is
described in our supplementary material.

We found concatenating output of the encoders in two
networks together as input to the decoder of the flow in-
terpolation network yields slightly better results. More-
over, instead of directly predicting the intermediate optical
flow in the flow interpolation network, we found it performs
slightly better to predict intermediate optical flow residuals.
In specific, the flow interpolation network predicts �Ft!0

and �Ft!1. We then have

Ft!0 = F̂t!0 + �Ft!0

Ft!1 = F̂t!1 + �Ft!1 (6)

3.3. Training
Given input images I0 and I1, a set of intermediate

frames {Iti}N
i=1 between them, where ti 2 (0, 1), and our

predictions of intermediate frames {Îti
}N

i=1, our loss func-
tion is a linear combination of four terms:

l = �rlr + �plp + �wlw + �sls. (7)

Reconstruction loss lr models how good the reconstruc-
tion of the intermediate frames is:

lr =
1

N

NX

i=1

kÎti
� Iti

k1. (8)

Such a reconstruction loss is defined in the RGB space,
where pixel values are in the range [0, 255].

Perceptual loss. Even though we use the L1 loss to
model the reconstruction error of intermediate frames, it
might still cause blur in the predictions. We therefore use
a perceptual loss [11] to preserve details of the predic-
tions and make interpolated frames sharper, similar to [20].
Specifically, the perceptual loss lp is defined as

lp =
1

N

NX

i=1

k�(Ît) � �(It)k2, (9)

where � denote the conv4 3 features of an ImageNet pre-
trained VGG16 model [27]

Warping loss. Besides intermediate predictions, we also
introduce the warping loss lw to model the quality of the
computed optical flow, defined as

lw =kI0�g(I1, F0!1)k1+kI1�g(I0, F1!0)k1+ (10)

1
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�g(I0, F̂ti!0)k1+

1

N

NX

i=1
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�g(I1, F̂ti!1)k1.

Smoothness loss. Finally, we add a smoothness term [15]
to encourage neighboring pixels to have similar flow values:

ls = krF0!1k1 + krF1!0k1. (11)

The weights have been set empirically using a validation set
as �r = 0.8, �p = 0.005, �w = 0.4, and �s = 1. Every com-
ponent of our network is differentiable, including warping
and flow approximation. Thus our model can be end-to-end
trained.

4. Experiments
4.1. Dataset

To train our network, we use the 240-fps videos
from [29], taken with hand-held cameras. We also collect
a dataset of 240-fps videos from YouTube. Table 1 sum-
marizes the statistics of the two datasets and Fig. 5 shows
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kÎti
� Iti

k1. (8)

Such a reconstruction loss is defined in the RGB space,
where pixel values are in the range [0, 255].

Perceptual loss. Even though we use the L1 loss to
model the reconstruction error of intermediate frames, it
might still cause blur in the predictions. We therefore use
a perceptual loss [11] to preserve details of the predic-
tions and make interpolated frames sharper, similar to [20].
Specifically, the perceptual loss lp is defined as

lp =
1

N

NX

i=1
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Fig. 2. The proposed architecture for temporal precipitation interpolation based on a multi-frame video interpolation
method [10] and an additional geospatial feature incorporated.

Fig. 3. Flooding simulation results using input precipitation
from the linear interpolation (from 60 minutes to 5 minutes
interval, left). The absolute difference from the result with the
original fine temporal resolution (right) is mapped in colors
(red - missing, blue - extra).

or 20, and 15 minutes after the first reference frame. Gener-
ally the baseline liner interpolation (Linear) is good at inter-
polating when the target is closer to reference frames. Simply
adapting SSM gives general reduction of errors. Adding our
proposed adaptation of topographic features (+Topo for ad-
ditional DEM input as is, +Dot for dot products of flow and
gradient vectors) and intensity change consistency (3D) gives
further reduction.

The advantage of the proposed approach over the base-
line linear interpolation (Linear) is the largest for interpola-
tion temporarily far from the reference input frames, and for
severe weather (6 hours before the flooding event), with up-
to 20% error reduction observed. The use of the intensity
change (3D) generally matters for the 3-day average (includ-
ing the day before and after the day of the flooding event),
where weather which isn’t severe is included. Supplying dot-
product (of rain cloud flow and terrain gradient, Dot) features
works reasonably well.

0

0

Fig. 4. Mean absolute errors (lower better) of interpolated
precipitation with SEM in average of 3 days (top, including
the days before/after the flooding event) and 6 hours (bottom,
just before the flooding event).

4. CONCLUDING REMARKS

We have introduced a novel adaptation of a multi-frame video
interpolation technique for temporal interpolation of precipi-
tation observation from satellite radars. Terrain information
is combined for use with temporarily coarse-grained precip-
itation radar observation as inputs for self-supervised train-
ing. Our experiment with the Meteonet dataset as ground-
truth showed improved interpolation accuracy of our method,
when compared to traditional linear interpolation.
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