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ABSTRACT

Traditionally, the quality of acoustic echo cancellers is evaluated us-
ing intrusive speech quality assessment measures such as ERLE [1]
and PESQ [2], or by carrying out subjective laboratory tests [3, 4].
Unfortunately, the former are not well correlated with human sub-
jective measures, while the latter are time and resource consuming
to carry out [5]. We provide a new tool for speech quality assessment
for echo impairment which can be used to evaluate the performance
of acoustic echo cancellers. More precisely, we develop a neural
network model to evaluate call quality degradations in two separate
categories: echo and degradations from other sources. We show that
our model is accurate as measured by correlation with human sub-
jective quality ratings. Our tool can be used effectively to stack rank
echo cancellation models. AECMOS is being made publicly avail-
able as an Azure service.

Index Terms— Speech Quality Assessment, Acoustic Echo
Cancellation

1. INTRODUCTION

Acoustic echo arises when a near end microphone picks up the near
end loudspeaker signal and a far end user hears their own voice. The
presence of acoustic echo is a top complaint in user ratings of audio
call quality.

Acoustic echo cancellers (AECs) significantly improve audio
call quality by canceling echo. This is achieved by first comparing
the transmitted signal to the received signal, processing for delay and
signal distortions, and then subtracting to remove the echo compo-
nent. The goal is to only transmit a clean near end signal.

Recently, there has been a lot of innovation in AECs. The rise
of deep learning has led to better performing models as compared
to their classical counterparts [6, 7, 8, 9, 10]. Also, hybrid models,
combining both classical and deep learning methods such as using
adaptive filters and recurrent neural networks (RNNs) [11, 12], have
shown great results [13, 14, 15]. With the rapid advancements in the
field of echo cancellation, it becomes ever more critical to be able to
objectively measure and compare the performance of AECs.

We propose a speech quality assessment metric for evaluating
echo impairment that overcomes the drawbacks of conventional
methods. Our model, called AECMOS, directly predicts human
subjective ratings for call echo impairment. It can be used to eval-
uate the end-to-end performance of AECs and to rank different
AEC methods based on (degradation) mean opinion score (MOS)
estimates with great accuracy.

Our model architecture is a deep neural network comprising of
convolutional layers, GRU (gated recurrent unit) layers, and dense
layers. AECMOS is trained using the ground truth human ratings
obtained following guidance from ITU-T Rec. P.831 [3], ITU-T Rec.
P.832 [4] and ITU-T Rec. P.808 [16] as described in [5].

AECMOS is extremely effective in aiding with the develop-
ment and research of AECs. We are providing the AECMOS as an
Azure service for other researchers to use as well. The details of the
API are at https://github.com/microsoft/AEC-Challenge/tree/main/
AECMOS. We have already received over 50 requests for accessing
our service ranging from university researchers to big companies.
For examples of AECMOS (aka DECMOS) use in AEC model de-
velopment we refer the reader to [11, 6] which include winners of
the INTERSPEECH 2021 Acoustic Echo Cancellation Challenge
[15].

AECMOS does not require a clean speech reference for the near
or far end, nor a quiet environment. A clean reference is typically
not available in non-artificial scenarios, and the test set that we use
for evaluating AECMOS can be much more realistic and represen-
tative than artificial scenarios. Our test set was selected from over
5000 different scenarios, each with different room acoustics, differ-
ent devices, and different human speakers. AECMOS can be used
in actual customer calls to monitor the quality of real calls; it is not
restricted to lab or development usage, but has operational utility.

2. RELATED WORK

Common methods of evaluating AEC models [17, 18, 19, 20] in-
clude using intrusive objective measures such as echo return loss
enhancement (ERLE) [1] and perceptual evaluation of speech qual-
ity (PESQ) [2]. ERLE can only be measured when having access
to both the echo and processed echo signals, in a quiet environment
without near end speech. ERLE can be approximately measured by:

ERLE ≈ 10 log10
E[y2(n)]

E[e2(n)]
where y(n) is the microphone record-

ing of the far end signal (with no echo suppression), and e(n) is the
residual echo after cancellation. PESQ requires a clean speech ref-
erence in addition to the degraded speech.

Unfortunately, metrics such as ERLE and PESQ are often not
well correlated with human subjective ratings of call echo degrada-
tion quality [5]. This is especially true in the presence of background
noise or double talk [21, 5]. Carrying out laboratory tests following
standards such as ITU-T Rec. P.831 [3], while more accurate, is
expensive, time consuming, and not a scalable solution.

There are objective standards to help characterize AEC perfor-
mance. IEEE 1329 [22] defines metrics like terminal coupling loss
for single talk (TCLwst) and double talk (TCLwdt), which are mea-
sured in anechoic chambers. TIA 920 [23] uses many of these met-
rics but defines required criteria. ITU-T Rec. G.122 [24] defines
AEC stability metrics, and ITU-T Rec. G.131 [25] provides a useful
relationship of acceptable Talker Echo Loudness Rating versus one
way delay time. ITU-T Rec. G.168 [1] provides a comprehensive set
of AEC metrics and criteria. However, it is not clear how to combine
these dozens of metrics to a single metric, or how well these metrics
correlate to subjective quality.

Commercially available objective metrics include EQUEST [26]
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which measures single talk echo performance. An objective metric
for double talk echo performance is ACOPT 32 [27] which imple-
ments the 3GPP standard TS 26.132 [28]. ACOPT 32 is of limited
use in real call scenarios as it requires the same near-end signal to
be played twice once as single talk and once as part of double talk.
Furthermore, it is not straightforward to interpret the model outputs.

3. DATA

We use supervised learning to train AECMOS. Each example in the
dataset consists of three audio signals: near end microphone signal,
far end signal, and the output from an echo canceller which we call
the enhanced signal. The label for a given example is its (degrada-
tion) Mean Opinion Score (MOS) obtained from crowdsourcing as
described in [5].

In generating the data set, we distinguished between single talk
and double talk scenarios. For the near end single talk case, we
asked for the overall quality [16]. For far end single talk, we asked
for echo ratings [3]. For double talk, we asked for ratings for both
echo annoyance and other degradations in two separate questions 1.
All impairments were rated on the degradation category scale (from
1:Very annoying to 5: Imperceptible). The ratings were then used to
obtain a MOS label for the examples. For near end single talk, the
echo label was set to 5 and for far end single talk the degradation
label was set to 5. We found including ratings for double talk non-
echo degradations to improve the correlation between experts and
naive raters [5].

The model was trained on 64, 013 samples ranging in duration
from 3 seconds to 14.5 seconds with a mean of 8.2 seconds, for a
total of 145.8 hours of data. The training data included 17 submitted
models with a total of 14K audio clips from the ICASSP 2021 AEC
Challenge [13]. The breakdown of the training data set by scenario
is: 45.6% near end single talk, 26.7% far end single talk, and 27.7%
double talk.

The test set consists of submissions from the INTERSPEECH
2021 AEC Challenge [29, 15]. There were a total of 14 contestants
submitting their work for 300 double talk, 300 far end single talk,
and 200 near end single talk examples. In addition, we included the
enhanced signals of 4 of our own deep models along with 4 digi-
tal signal processing based models. In this manner, we obtained a
total of 17, 600 enhanced speech signals or 55 hours of data. The
ground truth labels were gathered via crowdsourcing using the tool
[5], where we collected 5 votes per clip. Figure 1 shows that, in the
case of double talk, a wide variety of echo and other degradation
MOS score behaviours co-occur.

4. MODEL

Advancements in deep learning have shown great potential in vari-
ous speech enhancement tasks [9, 20], including for speech quality
assessment [30, 31]. Here we propose a deep neural network to re-
place humans as call quality raters for speech impairment due to
echo and other degradations.

4.1. Features

The AECMOS model takes as input three signals: near end micro-
phone signal, far end signal, and the output from an echo canceller

1Question 1: How would you judge the degradation from the echo? Ques-
tion 2: How would you judge other degradations (noise, missing audio, dis-
tortions, cut-outs)?

Fig. 1. Test set double talk ground truth labels.

also referred to as the enhanced signal. The task is to evaluate the
quality of the enhanced signal with regard to echo impairment on a
human subjective rating scale. Observe that the very nature of acous-
tic echo necessitates a comparison of signals. Knowledge of both the
near end microphone signal and the far end signal is needed to de-
termine whether the enhanced signal contains echo as opposed to
some background noise, for example. This is in contrast to evaluat-
ing noise suppression quality which can be done successfully with-
out reference signals [30].

In addition to the three input signals, AECMOS also takes an
optional scenario marker as part of the input. This marker encodes
which of the three scenarios we are in: near end single talk, far end
single talk, or double talk. For online deployment, the marker is not
used. For offline AEC model evaluations, when scenario information
is readily available, activating the scenario marker improves model
performance as shown in Table 4. In our training set, each sample
has an associated scenario label that was created at the time of the
generation of the training data. We found it effective to prepend a
one-hot vector of a fixed length to the three model input signals in-
dicating which signal(s) should be considered active for a particular
sample.

We used micro augmentations during training to increase model
stability. By this, we mean imperceptible data augmentations: re-
moving the initial 10 ms of the near end microphone signal, or
changing the energy level by 0.5 dB.

Details about the data set and the crowdsourcing approach for
obtaining the ground truth labels appear in Section 3 and [5, 29, 30].

4.2. Architecture

For the model architecture, we explored different configurations of
convolutional models. A significant boost in MOS prediction cor-
relations with the ground truth labels came from incorporating GRU
layers into the model. Table 1 shows the architecture for the best per-
forming model. In developing the model, we saw that for all mod-
els the double talk scenario posed the hardest challenge. As shown
in Table 4, incorporating GRU layers improved model performance
most significantly for double talk.

The input to the model is a stack of three log power spectrograms
obtained from the near end, far end, and enhanced signals. The spec-
trograms were computed with a DFT size of 512 and a hop size of
256 over clips that were sampled at 16 kHz. Finally, we calculate the
logarithm of the power. For an 8 second clip, this results in an input



dimension of 541 × 257. AECMOS handles variable length inputs
natively.

Table 1. AECMOS architecture
Layer Output Dimensions
Input: 3× 541× 257
Conv: 32, (3× 3), LeakyReLU (32, 270, 128)
MaxPool: (2 x 2), Dropout(0.4)
Conv: 64, (3× 3), LeakyReLU (64, 135, 64)
MaxPool: (2 x 2), Dropout(0.4)
Conv: 64, (3× 3), LeakyReLU (64, 67, 32)
MaxPool: (2 x 2), Dropout(0.4)
Conv: 128, (3× 3), LeakyReLU (128, 33, 16)
MaxPool: (2 x 2), Dropout(0.4)
Global MaxPool (1, 128)
Bidirectional GRU: 128, NumLayers 2
HiddenUnits 64, Drouput(0.2) (1, 128)
Dense: 64, LeakyReLU Dropout(0.4) (1, 64)
Dense: 64, LeakyReLU Dropout(0.4) (1, 64)
Dense: 2, 1 + 4* sigmoid (1, 2)

The model was trained on 8 GPUs with a batch size of 10 per
GPU. We used the Adam optimizer [32] and MSE loss function until
the loss saturated.

The model outputs two MOS predictions on a scale of 1 − 5:
one for echo and one for other MOS. These outputs correspond to
the ground truth labels as described in Section 3.

5. EXPERIMENTS

We evaluate the accuracy of our model by measuring the correla-
tion between the predictions of our AECMOS and the ground truth
human ratings.

More precisely, we used the enhanced signals from a total of 22
models. For each model, the outputs were produced for 300 double
talk, 300 far end single talk, and 200 near end single talk examples.
See Section 3 for more details. For each audio clip, we obtained the
objective MOS rating using our model and the crowdsourced MOS
score.

5.1. Results

In order to evaluate our model, we calculate the PCC for the AEC-
MOS predictions versus the ground truth MOS labels.

For each far end single talk example, we also calculate the
ERLE, PESQ, and EQUEST score. As seen in Table 2, in the far
end single talk scenario, AECMOS outperforms ERLE, PESQ, and
EQUEST (evaluated with 150 wideband test conditions).

For the near end single talk scenario, we can compare our AEC-
MOS with DNSMOS model which was developed for evaluating
noise suppression models [30]. AECMOS has a more difficult task
than DNSMOS: evaluate both echo and other degradations and do so
independently of each other. Nonetheless, we believe that AECMOS
has very good potential to improve in the near end single talk cate-
gory. For one, DNSMOS was trained on about 120, 000 audio clips
[30], while AECMOS saw only about half that many for training and
only a quarter as many, roughly 30, 000, were near end single talk
clips. With this in mind, AECMOS performance is very promising.

Expectedly, the most challenging scenario to evaluate is the dou-
ble talk scenario. Here the model needs to evaluate separate quali-
ties, echo and other degradations, simultaneously yet independently

Fig. 2. far end Single Talk Per Clip: AECMOS

Table 2. Per Clip PCC for AECMOS, and other commonly used
metrics: DNSMOS, ERLE, PESQ, EQUEST.

AEC
MOS

DNS
MOS

ERLE PESQ EQUEST

ST far end DMOS 0.847 0.541 0.710 0.686
ST near-end MOS 0.611 0.640
DT Echo DMOS 0.582
DT Other DMOS 0.751

of each other. Measuring and improving double talk performance
is important as not being able to interrupt others speaking has been
shown to impair meeting inclusiveness and participation rate [33].

For evaluating the stack ranking of different echo cancellers, we
compute the average of ratings across the entire test set for each
model. We calculate the same for AECMOS ratings. Finally, we
calculate the Spearman’s Rank Correlation Coefficient (SRCC) be-
tween the two. The results are given in Table 3. We report an SRCC
of 0.969 and a PCC of 0.996 in the far end single talk scenario,
which is the most common scenario for echo cancellation. We note
that the best performing submitted models were very close to each
other in the contest. In fact, so much so that the human MOS rank-
ings were within error bars of each other [15].

Table 3. AECMOS Per Contestant PCC and SRCC: All Scenarios
refers to far end single talk and double talk for echo; and near end
single talk MOS and double talk Other MOS.

PCC SRCC
All Scenarios Echo DMOS 0.981 0.970
All Scenarios (Other) MOS 0.902 0.954
ST far end Echo DMOS 0.996 0.969
ST near end MOS 0.923 0.831
DT Echo DMOS 0.898 0.863
DT Other DMOS 0.927 0.955

6. ABLATION STUDY

We experimented with various architectures, features, and training
methods. In this section, we give an overview of the key findings.



Fig. 3. Per contestant: echo degradation (far end single talk and
double talk) and other MOS (near end single talk and double talk).

We started out with a baseline model consisting of 5 convolu-
tional layers followed by 3 dense layers. The input to all models was
a stack of three features: log power of STFT applied to the near end,
far end, and enhanced signal. All models were trained using micro
augmentations as described in Section 4.

The first improvement in our model’s performance came from
including scenario labels as part of the model input. As we were
exploring avenues for model development, we conducted a small ex-
periment where we incorporated label information in the loss func-
tion and asked the model to predict scenario labels in addition to the
MOS labels. Curiously, the model predicted the far end single talk
scenario 87% of the time while only 52% of the labels were actually
far end single talk with the remaining labels being double talk. In-
troducing an optional scenario marker for offline use helped model
performance as described in Table 4. More discussion of input fea-
tures can be found in Section 4.1.

The second improvement came about when we were investigat-
ing how to improve double talk performance. Experiments with con-
volution kernel size led us to believe that our model was having diffi-
culties incorporating information along the temporal axis. Introduc-
ing GRU layers into the model remedied this issue. In adding a new
layer, we needed to remove a convolutional layer so that we would
not be down sampling too aggressively before reaching the GRU
layer. Table 4 summarizes the aforementioned key improvements.

We also experimented with using log power of Mel spectrogram
for model input features. Mel spectrogram corresponds well with hu-

Table 4. Per Clip Pearson Correlation Coefficients: Baseline Con-
volutional Model; add scenario markers to model input; remove a
convolution layer and add a GRU layer to obtain AECMOS.

Baseline + scenario + GRU
All Scenarios Echo DMOS 0.732 0.746 0.797
All Scenarios (Other) MOS 0.735 0.775 0.802
ST far end Echo DMOS 0.780 0.825 0.847
ST near end MOS 0.434 0.534 0.611
DT Echo DMOS 0.458 0.422 0.582
DT Other DMOS 0.577 0.657 0.751

man subjective hearing and has been successfully used in evaluating
noise suppression [30]. Our best model that takes Mel spectrogram
features as input uses 160 Mel bins. While we experimented with
different settings, we found a consistent behavior that the Mel mod-
els achieve lower correlation scores for echo and higher scores for
other degradations. This matches our intuition as detecting the pres-
ence of echo is less dependent on human subjective experience than
classifying a sound as noise.

Table 5. Per Clip Pearson Correlation Coefficients: AECMOS;
AECMOS trained with Mel spectrogram features.

AECMOS AECMOS Mel
All Scenarios Echo DMOS 0.797 0.742
All Scenarios (Other) MOS 0.802 0.819
ST far end Echo DMOS 0.847 0.739
ST near end MOS 0.611 0.604
DT Echo DMOS 0.582 0.553
DT Other DMOS 0.751 0.772

Finally, we experimented with the self-teaching paradigm [30]
and training with bias-aware [34] loss. Interestingly, neither pro-
vided significant improvements in PCC.

7. IMPROVEMENTS DUE TO GROWING TRAINING
DATA.

We conjecture that our model’s performance improves with more
training data. In particular, we have observed that increasing the
size of our training data from 64K audio clips to 108K clips and
testing on 5K clips, gives a model that is just as accurate for inference
whether or not it uses scenario label information. The difference in
correlations was roughly 1% across all scenarios. However, since
we used more data for training we could not validate this claim as
thoroughly as we have done for our work in the previous sections of
this paper.

8. CONCLUSIONS

Our AECMOS model provides a speech quality assessment metric
that is accurate, expedient, and scalable. It can be used to stack
rank echo cancellers with very good accuracy and thereby accelerate
research in echo cancellation. In the future, we would like to further
improve the model by exploring additional data augmentations and
learning custom filter banks.
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Author Response to Referee Comments (ID: 1CAF).

We thank the referee for carefully reading the paper and offering many helpful comments.

1. Section 4.1. We removed the redundancy about describing processing which is now fully in
Section 4.2. We included an additional comment about scenario labels in Section 4.1. Namely,
that each training sample has a scenario label generated at the time of the creation of the
training data. We fixed the wording about taking logarithms as pointed out by the referee.

2. Subject based MOS scores. The ground truth MOS scores for the test set have the following
distributions: We included further information about ground truth labels at the end of Section 3.

Namely, we find it most compelling to share that in the case of double talk, a wide variety of
echo and other degradation MOS scores co-occur as shown in the new Figure 1.

3. Evaluation of call quality, especially in real call scenarios, is a complex topic of active research.
In this paper we develop an evaluation tool that follows industry standards (ITU-T Rec. P.831
, ITU-T Rec. P.832 and ITU-T Rec. P.808, as described in [5]) while replacing expensive and
time consuming subject trials.

While correlation with ground truth human labels certainly does not capture all possible infor-
mation, it does capture succinct information, making AEC model comparison tractable, and is
commonly used in industry.

We have updated the paper to also include a comparison with EQUEST in Table 2. EQUEST
is a proprietary tool that is designed specifically to give a high correlation to human MOS [26].
AECMOS significantly outperforms EQUEST.

Further information about the relationship between MOS and AECMOS is given by the scatter
plot figures i.e. we are not merely relying on single number (correlation).

Finally, during model development, in addition to Pearson’s correlation and Spearman’s rank
correlation, we used Kendall’s τ and distance correlation. In the contest, the top models scored
within each other’s 95% confidence interval error bars. This led us to implement metrics which
do not penalize objective metrics when they are correct within the same error bars: flex-τ ,
contracted and weighted correlations. For example, for double talk degradation for the 14
contestants (excluding our in house models), the numbers were: Pearson 0.936, Spearman
0.943, distance corr. 0.917, Kendall’s flex τ 0.912, weighted corr. 0.932, contracted Pearson
0.992, contracted Spearman 0.982, contracted distance 0.987. However, for the sake of clarity
and conciseness, and since the measures were largely in agreement, we decided to report only
the most commonly used measures.

AECMOS is the best tested and most accurate echo metric available, including for double talk.
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