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ABSTRACT

We present a neural-network-based fast diffuse room impulse
response generator (FAST-RIR) for generating room impulse
responses (RIRs) for a given acoustic environment. Our
FAST-RIR takes rectangular room dimensions, listener and
speaker positions, and reverberation time (T60) as inputs and
generates specular and diffuse reflections for a given acoustic
environment. Our FAST-RIR is capable of generating RIRs
for a given input T60 with an average error of 0.02s. We
evaluate our generated RIRs in automatic speech recogni-
tion (ASR) applications using Google Speech API, Microsoft
Speech API, and Kaldi tools. We show that our proposed
FAST-RIR with batch size 1 is 400 times faster than a state-
of-the-art diffuse acoustic simulator (DAS) on a CPU and
gives similar performance to DAS in ASR experiments. Our
FAST-RIR is 12 times faster than an existing GPU-based RIR
generator (gpuRIR). We show that our FAST-RIR outper-
forms gpuRIR by 2.5% in an AMI far-field ASR benchmark.

Index Terms— acoustic environment, speech simulation

1. INTRODUCTION

Room impulse response (RIR) generators are used to simulate
large-scale far-field speech training data [1–3]. A synthetic
far-field speech training dataset is created by convolving clean
speech with RIRs generated for different acoustic environ-
ments and adding background noise [2,4]. The acoustic envi-
ronment can be described using room geometry, speaker and
listener positions, and room acoustic materials.

In recent years, an increasing number of RIR generators
have been introduced to generate a realistic RIR for a given
acoustic environment [5–8]. Accurate RIR generators can
generate RIRs with various acoustic effects (e.g., diffraction,
scattering, early reflections, late reverberation) [9]. A limi-
tation of accurate RIR generators is that they are computa-
tionally expensive, and the time taken to generate RIRs de-
pends on the geometric complexity of the acoustic environ-
ment. Also, many ray-based RIR simulators use the empir-
ical Sabine formula [10] to compute the acoustic absorption
coefficients from the desired reverberation time. Reverbera-
tion time (T60) is the time required for the sound energy to

decay by 60 decibels [11].
With advancements in deep neural-network-based far-

field speech processing, the demand for on-the-fly simula-
tion of far-field speech training datasets with hundreds of
thousands of room configurations similar to the testing en-
vironment is increasing [12–15]. The CPU-based offline
simulation of far-field speech with balanced T60 distribution
requires a lot of computation time and disk space [5,7], thus it
is not scalable for production-level ASR training. One strat-
egy to improve the speed of RIR generation is parallelizing
most of the stages in the existing RIR generators and making
the algorithm compatible for running on GPUs [13, 16].
Main Contributions: We propose a neural-network-based
fast diffuse room impulse response generator (FAST-RIR)
that can be directly controlled using rectangular room dimen-
sion, listener and speaker positions, and T60. T60 implicitly
reflects the characteristics of the room materials such as the
floor, ceiling, walls, furniture etc. Our FAST-RIR takes a
constant amount of time to generate an RIR for any given
acoustic environment, and yields accurate T60.

Our FAST-RIR architecture is trained to generate both
specular and diffuse reflections for a given acoustic environ-
ment. Diffuse reflection is widely observed in real-world en-
vironments and it is important to accurately model RIR. We
show that our FAST-RIR can generate RIRs 400 times faster
than the state-of-the-art diffuse acoustic simulator (DAS) [7]
on a single CPU and 12 times faster than gpuRIR [13] on a
single GPU. The RIRs generated using our FAST-RIR per-
form similarly to the RIRs generated using the DAS and out-
perform gpuRIR by up to 2.5% in far-field automatic speech
recognition (ASR) experiments. Our FAST-RIR can generate
RIRs for a given input T60 with an average error of 0.02s.

2. RELATED WORKS

The RIR generators developed over the decades can be di-
vided into three groups: wave-based, ray-based, and neural-
network-based techniques. Wave-based techniques are de-
signed to give the most accurate results by solving wave equa-
tions [17, 18]. However, the wave-based techniques are only
feasible for generating RIRs for less complicated scenes at
low frequencies. Ray-based techniques [19] are less accurate
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Fig. 1. The architecture of our FAST-RIR. Our Generator net-
work takes acoustic environment details as input and gener-
ates corresponding RIR as output. Our Discriminator network
discriminates between the generated RIR and the ground truth
RIR for the given acoustic environment during training.

than the wave-based approach because the wave nature of the
sound is neglected. The image method [5] and diffuse acous-
tic simulators [7] are commonly used ray-based methods in
speech-related tasks. The image method only models spec-
ular reflections while diffuse acoustic simulators accurately
model both diffuse and specular reflections.

Recently, neural-network-based RIR generators [20–22]
have been introduced to generate RIRs for a given acoustic
environment. IR-GAN [20] is a GAN-based RIR generator
that is trained on a real-world RIR dataset to generate re-
alistic RIRs. However, IR-GAN does not take conventional
environmental parameters as input by design, making it less
configurable than traditional RIR generators.

3. OUR APPROACH

To generate RIRs for a given acoustic environment, we pro-
pose a one-dimensional conditional generator network. Our
generator network takes room geometry, listener and speaker
positions, and T60 as inputs, which are the common input used
by all traditional RIR generators, and generates RIRs as raw-
waveform audio. Our FAST-RIR generates RIRs of length
4096 at 16 kHz frequency.

3.1. Modified Conditional GAN

We propose a modified conditional GAN architecture to pre-
cisely generate an RIR for a given condition. GAN [23] con-
sists of a generator (G) and a discriminator (D) networks that
are alternatingly trained to compete. The networkG is trained
to learn a mapping from noise vector samples (z) from distri-
bution pz to the data distribution pdata. The network G is
optimized to produce samples that are difficult for the D to
distinguish from real samples (x) taken from true data distri-
bution, while D is optimized to differentiate samples gener-
ated from G and real samples. The networks G and D are
trained to optimize the following two-player min-max game
with value function V (G,D).

min
G

max
D

V (G,D) = Ex∼pdata
[logD(x)]+

Ez∼pz [log(1−D(G(z)))]. (1)

Conditional GAN (CGAN) [24,25] is an extended version
of GAN where both the generator and discriminator networks
are conditioned on additional information y. The generator
network in CGAN is conditioned on the random noise z and
y. The vector z is used to generate multiple different samples
satisfying the given condition y. In our work, we train our
FAST-RIR to generate a single sample precisely for a given
condition. Our FAST-RIR is a modified CGAN architecture
where the generator network is only conditioned on y.

3.2. FAST-RIR

We combine rectangular room dimension, listener location,
and source location represented using 3D Cartesian coordi-
nates (x, y, z) and T60 as a ten-dimensional vector embedding
πA. We normalize the vector embedding within the range -1.2
to 1.2 using the largest room dimension in the training dataset.

For each πA, we generate RIR using DAS (RD) and use
it as ground truth to train our network. Our objective function
for the generator network (GN ) consists of modified CGAN
error, mean square error and T60 error. The discriminator net-
work is trained using the modified CGAN objective function.

3.2.1. Generator Modified CGAN Error

The GN is trained with the following modified CGAN error
to generate RIRs that are difficult for the discriminator DN to
differentiate from RIRs generated from DAS.

LCGAN = EπA∼pdata
[log(1−DN (GN (πA)))]. (2)

3.2.2. Mean Square Error (MSE)

We compare each sample (s) of the RIR generated using our
FAST-RIR (RN ) with RIR generated using DAS (RD) for
each πA to calculate the following MSE.

LMSE = EπA∼pdata
[E[(RN (πA, s)−RD(πA, s))2]]. (3)

3.2.3. T60 Error

We generate RIRs using our FAST-RIR and calculate their
T60 using a method based on ISO 3382-1:2009. We compare
the T60 of each generated RIRs with the T60 given as input to
the network in the embedding πA as follows:

LT60
= EπA∼pdata

[|T60(GN (πA))− T60(πA)|]. (4)

3.2.4. Full Objective

We train the GN and DN alternatingly to minimize the gen-
erator objective function LGN

(Equation 5) and maximize the
discriminator objective function LDN

(Equation 6). We con-
trol the relative importance of the MSE (LMSE) and T60 error
(LT60

) using the weights λMSE and λT60
, respectively.



LGN
= LCGAN + λMSELMSE + λT60LT60 . (5)

LDN
= E(RD,πA)∼pdata

[log(DN (RD(πA)))]

+EπA∼pdata
[log(1−DN (GN (πA)))]. (6)

3.2.5. Implementation

Network Architecture: We adapt the generator network
(GN ) and the discriminator network (DN ) proposed in Stage-
I of StackGAN architecture [26] and modify the networks.
StackGAN takes a text description and a noise vector as input
and generates a photo-realistic two-dimensional (2D) image
as output. Our FAST-RIR takes acoustic environment details
as input and generates an RIR as a one-dimensional (1D) raw-
waveform audio output. We flatten the 2D convolutions into
1D to process 1D RIR in both GN and DN .

Unlike photo-realistic images, raw-waveform audio ex-
hibits periodicity. Donahue et al. [27] suggest that filters with
larger receptive fields are needed to process low frequencies
(large wavelength signals) in the audio. We improve the re-
ceptive field of the original GN and the encoder in DN by
increasing the kernel size (i.e., 3×3 2D convolution becomes
length 41 1D convolution) and strides (i.e., stride 2×2 be-
comes stride 4×1). We also replace the upsampling layer and
the following convolutional layer with a transposed convolu-
tional layer.
Dataset: The sizes of the existing real-world RIR datasets
[4, 28, 29] are insufficient to train our FAST-RIR. Therefore,
we generate 75,000 medium-sized room impulse responses
using a DAS [7] to create a training dataset. We choose 15
evenly spaced room lengths within the range 8m to 11m,
10 evenly spaced room widths between 6m and 8m, and 5
evenly spaced room heights between 2.5m and 3.5m to gener-
ate RIRs. We position the speaker and the listener at random
positions within the room and generate 100 different RIRs for
each combination of room dimensions (15×10×5). The T60
values of our training dataset are between 0.2s and 0.7s.
Training: We iteratively train GN and DN using RMSprop
optimizer with batch size 128 and learning rate 8x10−5. For
every 40 epochs, we decay the learning rate by 0.7.

4. EXPERIMENT AND RESULTS

4.1. Baselines

We randomly select 30,000 different acoustic environments
within the range of the training dataset (Section 3.2.5). We
generate RIRs corresponding to the selected acoustic envi-
ronments using image method [5], gpuRIR [13], DAS [7]
and FAST-RIR to evaluate the performance of our proposed
FAST-RIR. IR-GAN [20] does not have the capability to pre-
cisely generate RIRs for a given speaker and listener posi-
tions; therefore, we did not use IR-GAN in our experiments.

Table 1. The runtime for generating 30,000 RIRs using image
method, gpuRIR, DAS, and our FAST-RIR. Our FAST-RIR
significantly outperforms all other methods in runtime.
RIR Generator Hardware Total Time Avg Time
DAS [7] CPU 9.01x105s 30.05s
Image Method [5] CPU 4.49x103s 0.15s
FAST-RIR(Batch Size 1) CPU 2.15x103s 0.07s
gpuRIR [13] GPU 16.63s 5.5x10−4s
FAST-RIR(Batch Size 1) GPU 34.12s 1.1x10−3s
FAST-RIR(Batch Size 64) GPU 1.33s 4.4x10−5s
FAST-RIR(Batch Size 128) GPU 1.77s 5.9x10−5s

Table 2. T60 error of our FAST-RIR for 30,000 testing acous-
tic environments. We report the T60 error for RIRs cropped at
T60 and full RIRs. We only crop RIRs with T60 below 0.25s.

T60 Range Crop RIR at T60 T60 Error
0.2s - 0.25s No 0.068s
0.2s - 0.25s Yes 0.033s
0.25s - 0.7s - 0.021s
0.2s - 0.7s No 0.029s
0.2s - 0.7s Yes 0.023s

4.2. Runtime

We evaluate the runtime for generating 30,000 RIRs using
image method, gpuRIR, DAS and FAST-RIR on an Intel(R)
Xenon(R) CPU E52699 v4 @ 2.20 GHz and a GeForce RTX
2080 Ti GPU (Table 1). The gpuRIR is optimized to run
on a GPU; therefore, we generate RIR using gpuRIR only
on a GPU. For a fair comparison with CPU implementations
of image-method and DAS, we also generate RIRs using our
FAST-RIR with batch size 1 on a CPU.

From Table 1, we can see that our proposed FAST-RIR
with batch size 1 is 400 times faster than DAS [7] on a CPU.
Our FAST-RIR is optimized to run on a GPU. We compare the
performance of our FAST-RIR with an existing GPU-based
RIR generator gpuRIR [13]. We can see that gpuRIR per-
forms better than our FAST-RIR with batch size 1, which is
not the real use case of our generator. To our best knowledge,
the gpuRIR does not leverage the batch parallelization while
this was supported in our FAST-RIR. We can see that our pro-
posed FAST-RIR with batch size 64 is 12 times faster than
gpuRIR.

4.3. T60 Error

Table 2 shows the T60 error of the generated RIRs calculated
using Equation 4. We can see that the testing T60 error of our
FAST-RIR is high for input T60 below 0.25s (0.068s) when
compared to the input T60 greater than 0.25s (0.021s).

Our FAST-RIR is trained to generate RIRs with durations
slightly above 0.25s. For the input T60 below 0.25s, the gen-
erated RIR has a noisy output between T60 and 0.25s. We



notice that cropping the generated RIRs at T60 improves the
overall T60 error from 0.029s to 0.023s.

4.4. Simulated Speech Comparison

We simulate reverberant speech xr[t] by convolving clean
speech xc[t] from the LibriSpeech test-clean dataset [30] with
different RIRs r[t] (Equation 7).

xr[t] = xc[t]~ r[t]. (7)

We decode the simulated reverberant speech using Google
Speech API1 and Microsoft Speech API2. Table 3 shows the
Word Error Rate (WER) of the decoded speech. No text
normalization was applied in both cases, as only the relative
WER differences between different RIR generators are con-
cerned. For Google Speech API, we report WER for the clean
and reverberant LibriSpeech test sets that are successfully de-
coded. The results of each speech API show that compared
with the reverberant speech simulated using traditional RIR
generators, reverberant speech simulated using our FAST-RIR
is closer to the reverberant speech simulated using DAS [7].
We provide reverberant speech audio examples, spectrograms
and the source code for reproducibility at github3.

4.5. Far-field Automatic Speech Recognition

We want to ensure that our FAST-RIR generates RIRs that are
better than or as good as existing RIR generators for ASR.
We use the AMI corpus [31] for our far-field ASR experi-
ments. AMI contains close-talk speech data recorded using
Individual Headset Microphones (IHM) and distant speech
data recorded using Single Distant Microphones (SDM).

We use a modified Kaldi recipe 4 to evaluate our FAST-
RIR. The modified Kaldi recipe takes IHM data as the training
set and tests the model using SDM data. The IHM data can be
considered clean speech because the echo effects in IHM data
are negligible when compared to SDM data. We augment far-
field speech data by reverberating the IHM data with different
RIR sets using Equation 7. The 30,000 RIRs generated using
the image method, gpuRIR, DAS, and FAST-RIR are used in
our experiment.

The IHM data consists of 687 long recordings. Instead of
reverberating a speech recording using a single RIR, we do
segment-level speech reverberation, as proposed in [4]. We
split each recording at the beginning of at least continuous 3
seconds of silence. We split at the beginning to avoid inter-
segment reverberated speech overlapping. We can split IHM
data into 17749 segments. We reverberate each segment using
a randomly selected RIR from an RIR dataset (either image
method, gpuRIR, DAS, DAS-cropped or our FAST-RIR).

1https://cloud.google.com/speech-to-text/
2https://azure.microsoft.com/en-us/services/

cognitive-services/speech-services/
3https://anton-jeran.github.io/FRIR/
4https://github.com/RoyJames/kaldi-reverb/

Table 3. Automatic speech recognition (ASR) results were
obtained using Google Speech API and Microsoft Speech
API. We simulate a reverberant speech testing dataset by con-
volving clean speech from the LibriSpeech dataset with dif-
ferent RIR datasets. We compare the reverberant speech sim-
ulated using the image method, gpuRIR and our FAST-RIR
with the reverberant speech simulated using DAS. We show
that the relative WER change from our method is the smallest.

Testing Dataset Word Error Rate [%]
Clean Speech ~ RIR Google API Microsoft API
Libri ~ DAS (baseline) [7] 6.56 2.63

Libri ~ gpuRIR [13] 9.39 (+43%) 3.78 (+44%)
Libri ~ Image Method [5] 9.03 (+38%) 3.86 (+47%)
Libri ~ FAST-RIR (ours) 7.14 (+9%) 2.76 (+5%)

Table 4. Far-field ASR results were obtained for far-field
speech data recorded by single distance microphones (SDM)
in the AMI corpus. The best results are shown in bold.

Training Dataset Word Error Rate [%]
Clean Speech ~ RIR dev eval
IHM ~ None 55.0 64.2
IHM ~ Image Method [5] 51.7 56.1
IHM ~ gpuRIR [13] 52.2 55.5

IHM ~ DAS [7] 47.9 52.5
IHM ~ DAS-cropped [7] 48.3 52.6
IHM ~ FAST-RIR (ours) 47.8 53.0

Table 4 presents far-field ASR development and test WER
for far-field SDM data. We can see that our FAST-RIR outper-
forms gpuRIR [13] by up to 2.5% absolute WER. The DAS
[7] with full duration and the DAS cropped to have the same
duration as our FAST-RIR (DAS-cropped) performs similarly
in the far-field ASR experiment. We see that the performance
of DAS and FAST-RIR has no significant difference.

5. DISCUSSION AND FUTURE WORK

We propose a novel FAST-RIR architecture to generate a large
RIR dataset on the fly. We show that our FAST-RIR per-
forms similarly in ASR experiments when compared to the
RIR generator (DAS [7]), which is used to generate a training
dataset to train our FAST-RIR. Our FAST-RIR can be easily
trained with RIR generated using any state-of-the-art accu-
rate RIR generator to improve its performance in ASR exper-
iments while keeping the speed of RIR generation the same.

Although we trained our FAST-RIR for limited room di-
mensions ranging from (8m,6m,2.5m) to (11m,8m,3.5m) us-
ing 75,000 RIRs, we believe that our FAST-RIR will give a
similar performance when we train FAST-RIR for a larger
room dimension range with a huge amount of RIRs. We
would like to evaluate the performance of our FAST-RIR in
the multi-channel ASR [32] and speech separation [33] tasks.

https://cloud.google.com/speech-to-text/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
https://azure.microsoft.com/en-us/services/cognitive-services/speech-services/
https://anton-jeran.github.io/FRIR/
https://github.com/RoyJames/kaldi-reverb/
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croix, Shinji Watanabe, Lukás Burget, Jan Honza Cernocký,
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