
HAL Id: hal-03752879
https://hal.science/hal-03752879

Submitted on 17 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON THE USE OF GEODESIC TRIANGLES
BETWEEN GAUSSIAN DISTRIBUTIONS FOR

CLASSIFICATION PROBLEMS
Antoine Collas, Florent Bouchard, Guillaume Ginolhac, Arnaud Breloy,

Chengfang Ren, Jean-Philippe Ovarlez

To cite this version:
Antoine Collas, Florent Bouchard, Guillaume Ginolhac, Arnaud Breloy, Chengfang Ren, et al.. ON
THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLAS-
SIFICATION PROBLEMS. 2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2022), May 2022, Singapour, Singapore. �10.1109/ICASSP43922.2022.9747872�.
�hal-03752879�

https://hal.science/hal-03752879
https://hal.archives-ouvertes.fr


ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR
CLASSIFICATION PROBLEMS

A. Collas1, F. Bouchard2, G. Ginolhac3, A. Breloy4, C. Ren1, J.-P. Ovarlez1,5
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ABSTRACT

This paper presents a new classification framework for both
first and second order statistics, i.e. mean/location and co-
variance matrix. In the last decade, several covariance ma-
trix classification algorithms have been proposed. They often
leverage the Riemannian geometry of symmetric positive def-
inite matrices (SPD) with its affine invariant metric and have
shown strong performance in many applications. However,
their underlying statistical model assumes a zero mean hy-
pothesis. In practice, it is often estimated and then removed
in a preprocessing step. This is of course damaging for ap-
plications where the mean is a discriminative feature. Unfor-
tunately, the distance associated to the affine invariant met-
ric for both mean and covariance matrix remains unknown.
Leveraging previous works on geodesic triangles, we propose
two affine invariant divergences that use both statistics. Then,
we derive an algorithm to compute the associated Riemannian
centers of mass. Finally, a divergence based Nearest centroid,
applied on the crop classification dataset Breizhcrops, shows
the interest of the proposed framework.

Index Terms— Fisher information metric, divergence,
Riemannian optimization, Riemannian center of mass

1. INTRODUCTION

Classically, many signal processing applications make use of
the second order statistic. Indeed, when the multivariate sig-
nals are assumed to be Gaussian, the covariance matrix is an
interesting feature to discriminate data.

Recently, the Riemannian geometry associated to the
Fisher information metric (FIM) of the centered Gaussian
distribution [1] has been used with great successes on clas-
sification problems, e.g. on EEG data [2], in detection of
pedestrians [3] or in Diffusion tensor imaging [4]. The
squared distance of the geodesic between two covariance
matrices Σ1,Σ2 ∈ S++

p (set of p× p PSD matrices) benefits

from a simple closed form formula,

d2S++
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2
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where log is the matrix logarithm and ‖.‖2 is the Frobenius
norm. Notably, this distance is affine invariant, i.e ∀A ∈ Glp
(set of p× p invertible matrices),

dS++
p

(AΣ1A
T ,AΣ2A

T ) = dS++
p

(Σ1,Σ2). (2)

This invariance property is of particular interest for applica-
tions based on mixing models [5, 6], i.e the measured signal
is assumed to be a linear combination of a non-measurable
source signal. In this case, the distances in the source space
are equal to those in the measured signal space.

Then, many classification/clustering algorithms, e.g Near-
est centroid or K-means, need to compute centers of mass.
Here, centers of mass are computed on sets of covariance ma-
trices {Σ1, · · · ,ΣM}. Since, these matrices lie on a Rieman-
nian manifold, the classical arithmetic mean is extended to the
Riemannian case. Indeed, the Riemannian center of mass of
{Σ1, · · · ,ΣM}, denoted Σ?, associated to the distance (1),
is defined as the minimizer of the variance [7, 8],

Σ? = arg min
Σ∈S++

p

1

2M

M∑
i=1

d2S++
p

(Σ,Σi). (3)

A gradient descent achieves this minimization [4].
As mentioned earlier, this geometry assumes that the sig-

nals are centered. Therefore, it does not use the mean/location
whereas it can be a discriminative feature, e.g. on multispec-
tral images where signals are non-centered [9]. To preserve
invariances by affine transformations, the FIM is extended to
the case of non centered signals. Unfortunately, the associated
Riemannian geometry is not fully known. Especially, its dis-
tance is unknown. In the remainder of this paper, we propose
to address this issue by using geodesic triangles from [10,11].
Affine invariant divergences are obtained in Section 3 and a
computation of centers of mass is proposed in Section 4. This
framework is tested on real data in Section 5.

 



2. INFORMATION GEOMETRY OF THE
MULTIVARIATE GAUSSIAN DISTRIBUTION

Let a set of n data points xi ∈ Rp sampled from a random
variable x following a Gaussian distribution

x ∼ N (µ,Σ). (4)

The parameters µ ∈ Rp and Σ ∈ S++
p (set of symmetric pos-

itive definite matrices) are the location and covariance matrix
respectively. The negative log-likelihood is defined on the set
N p = Rp × S++

p and given υ = (µ,Σ) writes

L(υ) =
n

2
log |Σ|+ 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ). (5)

The maximum likelihood estimators of the Gaussian distribu-
tion are the well known sample mean and SCM,

µ̂ =
1

n

n∑
i=1

xi, Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T . (6)

Then,N p is turned into a Riemannian manifold. The tan-
gent space TυN p ofN p at υ is identified to the product space
Rp × Sp with Sp the set of symmetric matrices. Moreover,
N p is equipped with the FIM associated to the negative log-
likelihood (5). Let ξ =

(
ξµ, ξΣ

)
, η =

(
ηµ,ηΣ

)
∈ TυN p,

this metric writes [1]

〈ξ, η〉N
p

υ = ξTµΣ−1ηµ +
1

2
Tr(Σ−1ξΣΣ−1ηΣ). (7)

Remarkably, the FIM (7) is invariant under affine transforma-
tions. GivenA ∈ Glp and µ0 ∈ Rp we verify that

〈Dφ(υ)[ξ],Dφ(υ)[η]〉N
p

φ(υ) = 〈ξ, η〉N
p

υ , (8)

where the affine transformation writes,

φ(υ) = (Aµ+ µ0,AΣAT ), (9)

and Dφ(υ)[ξ] is the directional derivative of φ at υ in the
direction ξ (see e.g [12, Ch. 3]).

A geodesic γ(t) = (µ(t),Σ(t)) : R → N p associated to
the FIM (7) must have a zero acceleration [10]{

µ̈(t)− Σ̇(t)Σ(t)−1µ̇(t) = 0

Σ̈(t) + µ̇(t)µ̇(t)T − Σ̇(t)Σ(t)−1Σ̇(t) = 0.
(10)

An explicit expression of the geodesic onN p with initial posi-
tion γ(0) = υ and initial velocity γ̇(0) = ξ is derived in [10],
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However (11) only gives an expression of a geodesic with ini-
tial position and velocity. Unfortunately, in the general case,
a closed form expression of a geodesic between two points
υ1 = (µ1,Σ1) and υ2 = (µ2,Σ2) remains unknown. Hence,
the distance between υ1 and υ2 associated to the FIM (7) is
also unknown. Using other metrics than the FIM could give
closed form distances but they would not necessarily have the
affine transformation invariance property. Instead, we pro-
pose to use geodesic triangles derived from (11).

3. DIVERGENCES

Geodesic triangles between υ1 and υ2 using the expres-
sion (11) can be derived. Indeed, by carefully choosing
intermediate points υ, geodesics are obtained between υ1
and υ and then between υ and υ2. Hence, we get geodesic
triangles υ1 → υ → υ2.

The squared arc-length of one of these geodesic triangles
is then measured to get a divergence denoted δ2Np . By con-
struction, these divergences δ2Np are invariant by affine trans-
formation,

δ2Np(φ(υ1), φ(υ2)) = δ2Np(υ1, υ2). (12)

To construct those triangles, we recall that the manifold
with a fixed location vector N p

µ = {(µ,Σ) : Σ ∈ S++
p }

endowed with metric (7) is a geodesic submanifold of N p.
Hence, in the case µ1 = µ2, the squared distance on N p is

d2Np(υ1, υ2) =
1

2
d2S++

p
(Σ1,Σ2) (13)

Thus, to create a triangle between υ1 and υ2, it suffices to find
an intermediate point υ = (µ2,Σ), where Σ is determined
such that a geodesic (11) is known between υ1 and υ.

Based on this scheme, [10] proposed to use a rescaling of
the initial covariance matrix as an intermediate point, i.e.

υc = (µ2, cΣ1), (14)

with c =
∣∣Σ−11 Σ2

∣∣ 1p = arg minc∈R+
∗
d2Np(υc, υ2). Using

this point, a first separable and invariant under affine transfor-
mation (9) divergence on N p is proposed in Corollary 1.

Corollary 1 (Divergence δ2c,Np ). A separable and invariant
under affine transformations (9), divergence on N p is
δ2c,Np(υ1, υ2) =
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where ∆µ = µ2 − µ1 and c =
∣∣Σ−11 Σ2

∣∣ 1p .

 



Proof. Using the intermediate point υc = (µ2, cΣ1), and ap-
plying the construction of triangles explained earlier, we get
δ2c,Np(υ1, υ2) = ρ2(υ1, υc) + d2Np(υc, υ2), where ρ is the arc
length of a geodesic (11) computed in Equation (18) of [10].
Then, ρ is simplified. By denoting µ̃ = Σ

− 1
2

1 ∆µ, we get
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4 log(c)2 and Equa-

tion (13), we get the divergence δ2c,Np .

In [11], the authors proved that the orthogonal projection
of υ1 onto N p

µ2
is

υ⊥ =

(
µ2,Σ1 +

1

2
∆µ∆µT

)
. (15)

The squared arc length of the geodesic between υ1 and υ⊥ is
also computed in [11],

δ2⊥(υ1, υ⊥) =
1

2
acosh

(
1 + ∆µTΣ−11 ∆µ

)2
. (16)

Hence, using the intermediate point υ⊥ and summing Equa-
tion (16) with Equation (13) we get a second separable, and
invariant under affine transformation (9) divergence on N p.
This divergence is proposed in Corollary 2.

Corollary 2 (Divergence δ2⊥,Np ). A separable, and invariant
under affine transformations (9), divergence on N p is
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4. RIEMANNIAN OPTIMIZATION AND
ESTIMATION OF CENTERS OF MASS

In machine learning, some important clustering algorithms /
classifiers, e.g. K-means or Nearest centroı̈d, require a prox-
imity measure and an algorithm to compute centers of mass.
Since the divergences proposed in Corollaries 1 and 2 can be
used as a proximity measure, it only remains to explicit an
algorithm to compute centers of mass. Such an algorithm is
described in Section 4.2. It relies on optimization on the Rie-
mannian manifold N p. Hence, we begin by presenting tools
to perform gradient based optimization on N p.

4.1. Riemannian optimization on N p

In this subsection we consider a function f : N p 7→ R. The
objective is to find the parameter υ? minimizing f on N p,

υ? = arg min
υ∈Np

f(υ). (17)

Since N p is a Riemannian manifold, we leverage the frame-
work of optimization on Riemannian manifolds [12] to com-
pute (17). Thus, we provide two important tools for Rieman-
nian optimization, both associated to the metric (7) : (i) the
Riemannian gradient in Proposition 1, (ii) a second order re-
traction in Proposition 2 (approximation of the geodesic (11)
with lower calculation cost and better numerical stability).
With these tools, we can apply gradient based algorithms on
N p to minimize f . The corresponding Riemannian gradient
descent is given in Algorithm 1.

Proposition 1 (Riemannian gradient). Let υ ∈ N p, the Rie-
mannian gradient of f at υ is

gradNp f(υ) = PN
p

υ (ΣGµ, 2ΣGΣΣ)

where ∀ξ ∈ Rp × Rp×p, PN
p

υ (ξ) = (ξµ, sym(ξΣ)), with
sym(ξ) = 1

2 (ξ+ ξT ), is the orthogonal projection according
to the FIM (7) onto TυN p and gradε f(υ) = (Gµ,GΣ) is
the Euclidean gradient of f in Rp × Rp×p.

Proof. Using the definition of the gradient associated to the
Euclidean metric [12, Ch. 3], we get ∀ξ ∈ TυN p

D f(υ)[ξ] = GT
µξµ + Tr
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2
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2
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ΣΣ)Σ−1ξΣ

)
= 〈PN

p

υ (ΣGµ, 2ΣGΣΣ) , ξ〉N
p

υ .

Using the definition of the Riemannian gradient D f(υ)[ξ] =
〈gradNp f(υ), ξ〉Np

υ [12, Ch. 3], we get the Proposition 1.

Proposition 2 (Second order retraction). A second order re-
traction at υ ∈ N p of ξ ∈ TυN p is,

RN
p

υ (ξ) =
(
µ+ ξµ +

1

2
ξΣΣ−1ξµ,

Σ + ξΣ +
1

2

(
ξΣΣ−1ξΣ − ξµξ

T
µ

))
.

Proof. ∀υ ∈ N p,RN
p

υ is a smooth mapping from TυN p onto
N p. To be a second order retraction, it remains to check the
three following properties [12, Ch. 4 and 5]: ∀ξ ∈ TυN p

RN
p

υ (0) = υ,DRN
p

υ (0υ)[ξ] = ξ,
D2

dt2
RN

p

υ (tξ)
∣∣∣
t=0

= 0

where 0υ denotes the zero element of TυN p and D2

dt2 γ denotes
the acceleration of the curve t 7→ γ(t) on N p (see [12, Ch.
5]). The first two properties are easily verified. By denoting
RN

p

υ (tξ) = (µ(t),Σ(t)), and using Equation (10), the third
property is equivalent to{

µ̈(0)− Σ̇(0)Σ(0)−1µ̇(0) = 0

Σ̈(0) + µ̇(0)µ̇(0)T − Σ̇(0)Σ(0)−1Σ̇(0) = 0,

which is also verified.

 



Algorithm 1: Riemannian gradient descent [12]
Input : Initial iterate υ1 ∈ N p.
Output: Sequence of iterates {υk}.
k := 1;
while no convergence do

Compute a step size α (see [12, Ch. 4]) and set
υk+1 := RN

p

υk
(−α gradNp f(υk));

k := k + 1;
end

4.2. Estimation of Riemannian centers of mass

Some important algorithms in machine learning require the
computation the center of mass of a set of points S =
{υi}Mi=1 ⊂ N p. This center is associated to a proximity
measure which in our case is one of the divergences, δ2Np ,
defined in Section 3. Similarly to (3), the Riemannian center
of mass υ? is defined as the minimizer of the variance of S

υ? = arg min
υ∈Np

1

2M

M∑
i=1

δ2Np(υ, υi). (18)

Using tools from the previous subsection, we can perform op-
timization on N p. Hence, gradient based algorithms can be
applied to achieve (18) (e.g using Algorithm 1). Using Propo-
sition 1, computing the Riemannian gradient of the variance
defined in (18) amounts to computing its Euclidean gradient.
The latter is easily numerically computed using automatic dif-
ferentiation libraries like Autograd [13] or JAX [14].

5. APPLICATION
In this section, we provide an application of the theoret-
ical framework presented earlier on the large-scale satel-
lite image time series dataset for crop type mapping called
Breizhcrops [15].

More specifically, for each crop n = 45 observations
xi ∈ Rp are measured over time. Each xi contains mea-
surements of reflectance of p = 13 spectral bands. Then,
these measurements are concatenated into one batch Xj =
[x1, · · · ,xn] ∈ Rp×n. Hence, we get one matrixXj per crop
and each one belongs to an unknown class y ∈ J1,KK. These
K = 9 classes represent crop types such as nuts, barley or
wheat and are heavily imbalanced, i.e some classes are much
more represented than others. The data are divided into two
sets: a training set and a test set with 485 649 and 122 614
batches respectively. We apply a single preprocessing step:
all data are centered using the global mean. For simplicity,
the matrixXj is simply notedX in the following.

To classify these crops, we apply a Nearest centroid algo-
rithm on descriptors. Indeed, the use of statistical descriptors
is a classical procedure in machine learning as they are of-
ten more discriminative than raw data (see e.g [2, 3]). Hence,
this classification algorithm works in three steps: (i) For each
batchX , a descriptor is computed (e.g the sample mean or the

Estimator ofX Geometry OA (%) AA (%)
X Rp×n 10.1 18.5
µ̂ Rp 13.2 14.8

Σ̂, (µ known) S++
p 43.9 28.1

Σ̂, (µ unknown) S++
p 46.7 30.1

(µ̂, Σ̂) N p with δ2c,Np 54.3 37.0
(µ̂, Σ̂) N p with δ2⊥,Np 53.3 35.7

Table 1. Performance of the different estimators and Rie-
mannian geometries on the Breizhcrops dataset [15]. OA =
Overall Accuracy, AA = Average Accuracy.

SCM (6)). (ii) Then, on the training set, the center of mass of
the descriptors of each class is computed. (iii) Finally, on the
test set, each descriptor is associated to the nearest center of
mass. Thus, we get a classification of theX .

The different descriptors used in the application are the
following. The first two descriptors are the batches them-
selves X and their sample means µ̂ (6). Their associated
geometry is the Euclidean one with the Frobenius distance.
Thus, the center of mass is the classical element-wise arith-
metic mean. Then, the next two estimators are the SCMs
Σ̂ (6) with location assumed to be known or not. In the
case of known location, the SCM is simply estimated as
Σ̂ = 1

n

∑n
i=1 xixi

T . The associated geometry is S++
p as

presented in Equations (1) and (3). Finally, the last two de-
scriptors use both sample mean and SCM, (µ̂, Σ̂) from (6).
These estimators are used with the geometry N p and the two
divergences δ2c,Np and δ2⊥,Np presented in Corollaries 1 and 2
respectively. Riemannian centers of mass are computed using
Algorithm 1, implemented using Pymanopt [16] (the python
version of Manopt [17]).

Table 1 presents the Overall Accuracy and Average Ac-
curacy of the different descriptors and geometries used in
the Nearest centroid. Estimators using Σ̂ along with the
FIM clearly outperform the others. Also, the three estima-
tors assuming µ is unknown perform better than the others.
This shows the interest of not considering µ = 0 for such
applications, even if the global mean has been subtracted
in a preprocessing step. Finally, using the divergences pro-
posed in Corollaries 1 and 2 with their Riemannian centers
of mass greatly improves both Overall Accuracy and Average
Accuracy. These results confirm the interest of considering
geodesic triangles when the distance associated to the FIM is
not available in closed form.

6. CONCLUSIONS
This paper has proposed two affine invariant divergences that
handle both first and second order statistics of the Gaussian
distribution. The Riemannian geometry associated to the FIM
has been studied and an algorithm to compute Riemannian
centers of mass associated to these divergences has been pro-
posed. Finally, these tools have been applied on a classifica-
tion problem to show the interest of the proposed method.
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