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ABSTRACT

Keyword spotting (KWS) and speaker verification (SV) are
two important tasks in speech applications. Research shows
that the state-of-art KWS and SV models are trained inde-
pendently using different datasets since they expect to learn
distinctive acoustic features. However, humans can distin-
guish language content and the speaker identity simultane-
ously. Motivated by this, we believe it is important to explore
a method that can effectively extract common features while
decoupling task-specific features. Bearing this in mind, a
two-branch deep network (KWS branch and SV branch) with
the same network structure is developed and a novel decou-
pling feature learning method is proposed to push up the
performance of KWS and SV simultaneously where speaker-
invariant keyword representations and keyword-invariant
speaker representations are expected respectively. Experi-
ments are conducted on Google Speech Commands Dataset
(GSCD). The results demonstrate that the orthogonality regu-
larization helps the network to achieve SOTA EER of 1.31%
and 1.87% on KWS and SV, respectively.

Index Terms— Keyword spotting, orthogonality regular-
ization, speaker verification

1. INTRODUCTION

With the development of speech technology, speech assistants
are expected to help people solve affairs more efficiently. Peo-
ple increasingly enjoy the convenience of the hands-free ex-
perience. KWS and SV are two necessary key technologies
of the human-machine interaction system. The machine can
open the human-machine dialogue through keyword spotting
(KWS) and get authorized dialogue targets based on speaker
verification (SV).

KWS aims at detecting predefined keywords in an audio
stream [1]. In recent years, end-to-end deep neural networks
(DNN) have been employed in KWS and achieved superior
performance [1]. Since then, more elaborately designed neu-
ral networks are employed to build better performing KWS
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systems, including convolutional neural networks [2, 3, 4, 5],
recurrent neural networks [6, 7], and neural networks based
on attention mechanisms [8, 9], etc. To improve the detection
rate of non-target keywords while maintaining the accuracy
of target keywords, [10, 11] explored the use of deep metric
learning methods for the KWS task, where the DNN model
is not used directly for classification but rather as a feature
extractor that provides specific embeddings of keywords.

SV aims to verify the claimed identity of a person for
a given speech [12]. In this paper, we only focus on text-
independent SV that does not need any restriction on lexical
content for speaker modeling as well as testing. DNNs are
widely used for speaker verification because of their ability to
extract speaker features effectively [13, 14]. In particular, for
text-independent speaker verification tasks, the speaker fea-
tures learned by DNNs are independent of the text content.

Traditionally, the state-of-art KWS and SV models are
trained independently using different datasets since they ex-
pect to learn distinctive acoustic features. KWS requires fea-
tures requiring linguistic content as much as possible, while
SV requires features with rich speaker information. How-
ever, this independent treatment is not the way how humans
process speech signals: humans always simultaneously de-
cipher speech content and paralinguistic information includ-
ing languages, speaker characteristics and emotions, etc [15].
Specifically, for KWS and SV tasks, this “multi-task process-
ing” relies on three premises: (1) many common audio fea-
tures and techniques have been designed and employed for the
two tasks, such as Mel-frequency cepstral coefficient (MFCC)
features [16, 4], TDNN [13, 5] modeling framework, and met-
ric learning method [10, 17]; (2) all these tasks are basically
discriminative tasks, so they can share the same front-end sig-
nal processing (e.g. filtering) modules [18, 19] and pipeline;
and (3) they are mutual beneficial [15, 20, 21], for example,
by paying particular attention to specific voices while under-
standing information about the content of the language, we
can verify the speaker’s voice; on the other hand, if we are fa-
miliar with a speaker, we tend to recognize his/her voice [20].

The third point above has been experimentally demon-
strated by researchers that these KWS and SV tasks are col-
laborative [21, 20]. Jung et al.[21] argued that acoustic and
speaker domains are complementary. They proposed a multi-
task network and introduced global query attention to use the
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Fig. 1. Architecture of the proposed two-branch neural network. It consists of a shared temporal convolutional layer and two
branches, the KWS branch and the SV branch. In order to adopt orthogonal regularization, the GRUs of KWS and SV branches
were designed with the same neural network structure. N is the number of frames before and after layers. The details of Lorth

is described in Section 2.2.

interrelated domain information of KWS and SV. However,
the interaction of information between the KWS branch and
the SV branch is unidirectional. Speaker features are not used
by the KWS branch, which constrains further improvements
in its performance. [20] designed a two-branch neural net-
work, the input is a spectrogram, and the two branches output
keyword and speaker results respectively. In order to avoid
the interaction between keyword information and speaker in-
formation, [20] proposed dual attention to remove the infor-
mation of another branch from the current branch.

We believe that the key to solve the KWS and SV tasks
through a network is to efficiently extract the common fea-
tures of both tasks and decouple the task-related features. In
this paper, we propose a two-branch neural network to learn
the task-specific features of KWS and SV along with the com-
mon feature. Orthogonality regularization [22] is employed to
decouple the linguistic content information for KWS and the
speaker information for SV. Thus, under the supervised learn-
ing paradigm, the KWS and SV branches can extract more
distinct features from each other. Experiments are conducted
on Google Speech Commands Dataset (GSCD). The results
demonstrate that our proposed method achieve SOTA EER of
1.31% and 1.87% on KWS and SV, respectively.

2. PROPOSED METHOD

2.1. Neural Network Architecture

Inspired by SUDA [20], we designed a two-branch neural net-
work for KWS and SV. As shown in Fig.1, the Mel-Frequency

Cepstral Coefficient (MFCC) features are fed into the tempo-
ral convolution (TConv in Fig.1) to extract the shared features
for KWS and SV. Then, the hidden representation from the
first shared layer is passed to the next two gate recurrent unit
(GRU) networks that focus on extracting valid information for
each of the two sub-tasks, KWS and SV.

2.2. Decoupling Feature Learning via Orthogonality Reg-
ularization

In this paper, orthogonality regularization is used to decouple
latent features between two sub-tasks, KWS and SV. It aims to
decouple the hidden representation to learn speaker-invariant
keyword representations and keyword-invariant speaker rep-
resentations utilizing orthogonality regularization.

Specifically, we apply orthogonality regularization to the
GRU of the KWS branch and the SV branch (figure 1 red
dashed line). For each element xt in the input sequence of
time t, GRU layer computes the following function

rt = σ
(
Wirxt + bir +Whrh(t−1) + bhr

)
zt = σ

(
Wizxt + biz +Whzh(t−1) + bhz

)
nt = tanh

(
Winxt + bin + rt ∗

(
Whnh(t−1) + bhn

))
ht = (1− zt) ∗ nt + zt ∗ h(t−1)

(1)

where ht is the hidden state at time t, and rt, zt, nt are the
reset, update, and new gates, respectively. σ is the sigmoid
function and ∗ is the Hadamard product. Wir, Wiz , Win,
Whr,Whz ,Whn are trainable weight matrices. The following



is an example of the computational procedure for computing
orthogonal regularization using Wir

Lir
orth =

∑
W kws

ir W sv
ir

T (2)

where W kws
ir and W sv

ir represent the trainable matrices Wir

in KWS branch and SV branch, respectively. Summing up
the orthogonal regularization for all the weight matrices in
equation 1 to get the final orthogonal regularization

Lorth = Lir
orth+L

iz
orth+L

in
orth+L

hr
orth+L

hz
orth+L

hn
orth (3)

2.3. Loss Function

The loss function consists of three components, KWS task
loss, SV task loss and orthogonality regularization

L = Lkws + Lsv + Lorth (4)

where Lkws is the loss for KWS task, Lsv is the SV task
loss, and Lorth is the orthogonal regularization loss, calcu-
lated from formula 3. Both Lkws and Lsv consist of cross-
entropy (CE) loss and triplet loss, which provide supervised
information for the training process of the model.

Lkws = LCkws + LTkws (5)

Lsv = LCsv + LTsv (6)

where LCkws and LCsv denote the CE losses, make the KWS
branch extract linguistic content and makes the SV branch ex-
tract speaker information. LTkws and LTsv are triplet losses,
it is employed to increase the inter-class distance and reduce
intra-class distance. The triplet loss is applied on the 256-
dimensional feature vector at the step after 1D global average
pooling as shown in Figure 1, it is calculated in both the KWS
and SV branches, the selection of the triplet samples are in-
troduced in Section 3.2.

3. EXPERIMENTS

3.1. Dataset

The Google Speech Commands Dataset version 2 (GSCDv21)
[23] is used this study, which consists of 105,829 utterances
of 35 words. All the utterances are spoken by 2,618 speakers.
Every sample has 1 second duration and contains one word.
We use only 2,277 speakers, excluding those with less than 11
utterances. Then disjoint sets of 1959, 159 and 159 speakers
are randomly selected for training, validation, and test set, as
Table 2 shows. Also, to check the robustness of KWS against
unseen words, utterances corresponding to the three words
‘happy’, ‘marvin’, and ‘sheila’ are excluded from the train-
ing set. In this way, we get 83,636 training samples, 7,644
validation samples and 7,857 test samples from GSCDv2.

1http://download.tensorflow.org/data/speech commands v0.02.tar.gz

Table 1. Information on the real-world datasets
Training Validation Test Total

Utterances 60,647 6,048 6,048 72,743

Speakers 1,213 121 121 1,455

In order to verify the validity of the model in the real
world, we additionally use the real-world dataset. The
keyword is a four-syllable Mandarin Chinese term (“xiao-
ai-tong-xue”). We collected 14,543 positive examples and
58,200 negative examples. The splits of the training set,
validation set and test set are shown in Table 1.

Table 2. The number of utterances and speakers in training,
validation and test set. Extracted from Google Speech Com-
mands Dataset Version 2.

Training Validation Test Total

Utterances 83,636 7,644 7,857 99,137

Speakers 1,959 159 159 2,277

3.2. Implementation Details

Our implementation was done with Pytorch deep learning
toolkit. The raw audio is decomposed into a sequence of
frames where the window length is 20 ms and the stride is 10
ms for feature extraction. We use 40-dimensional MFCC.

Training. All the models are trained with a mini-batch of
256 samples using stochastic gradient descent with weight de-
cay of 0.001 and momentum of 0.9. The initial learning rate
is set to be 0.01 and decayed by a factor of 2 when the valida-
tion KWS or SV equal error rate (EER) does not decrease for
3 epochs. The training is terminated when validation KWS or
SV EER does not decrease for 10 epochs. Compared to an en-
rollment sample, a test sample falls into one of the following
four scenarios: (1) same keyword, same speaker; (2) same
keyword, different speaker (3) different keyword and same
speaker; (4) different keyword, different speaker. To train-
ing efficiency, for each training sample, we have randomly
choose 4 samples from the training set, corresponding to the
4 scenarios mentioned above.

Evaluation. KWS and SV are basically discrimination
tasks that make a decision given a score between embeddings
of enrollment and test utterances [21]. EER is used as the
metric to evaluate the models in this paper. All utterances in
the test set are used once for enrollment. The cosine distance
is used to measure the score. We train each model 10 times
and report its average performance.

3.3. Baselines

We use the same structure as the KWS and SV branches to
train the KWS and SV tasks separately as our baselines for the

http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz


KWS and SV tasks to demonstrate the collaborative between
the two tasks. To compare the performance impact of orthog-
onality regularization and dual attention [20], we replicated
SUDA [20] and trained it on the GSCDv2 dataset following
the training method described in Section 3.2.

3.4. Experimental Results and Analysis

3.4.1. Competing and collaborative information properties
of KWS and SV

As shown in the last row of Table 3, the orthogonality reg-
ularization leads to a significant performance improvement.
In addition, formula 3 can be applied to the LSTM with a
simple modification, and we also use orthogonality regular-
ization for the LSTM of the KWS branch and SV branch in
SUDA. As show in the ”SUDA” row of Table 3, orthogonality
regularization brings a consistent performance improvement
for proposed model and SUDA. Our experimental results are
consistent with the statement of [15] that there is collabora-
tive and competitive information between KWS and SV. Good
utilization of the information between the two tasks can lead
to improved performance of both tasks. Conversely, without
orthogonality regularization, the information competition be-
tween them makes both tasks perform worse than if they were
trained separately, as shown in Table 3.

Table 3. Performance in EER (%) for the proposed two-
branch neural network and baselines on GSCDv2, with 95%
confidence intervals.

Model KWS SV

KWS single-task 1.86± 0.10 -

SV single-task - 2.27± 0.03

SUDA 4.87± 0.07 5.95± 0.08
w/ Lorth 2.48± 0.11 3.51± 0.06

Proposed 1.31 ± 0.03 1.87 ± 0.07
w/o Lorth 2.08± 0.05 2.27± 0.09

3.4.2. Impact of training data

As mentioned in Section 3.2, one test sample falls into one
of four scenarios. In this section, we only keep scenarios (1)
same keyword, same speaker and scenarios (4) different key-
word, different speaker. The experimental results are shown
in Table 4, where there is a performance degradation using
the training data from two scenarios compared to the train-
ing data from four scenarios. This demonstrates that adding
training data from scenarios (2) and (3) allows the model to
extract more discriminative features.

3.4.3. Performance in the real world

We test on real-world dataset, as shown in Table 5, where
orthogonality regularization leads to performance improve-

Table 4. Performance in EER (%) for different training sam-
ples selection, with 95% confidence intervals.

Training Data KWS SV

2 scenarios 1.71± 0.05 2.13± 0.12
4 scenarios 1.31 ± 0.03 1.87 ± 0.07

ments. A noteworthy point is that the difference between the
EER of KWS and the EER of SV is about 10 times, which is
an issue worth exploring and we will explore this issue in our
future work.

Table 5. Performance in EER (%) for the proposed two-
branch neural network on real-world dataset, with 95% confi-
dence intervals.

Model KWS SV

Proposed 0.61 ± 0.04 7.01 ± 0.14
w/o Lorth 0.80± 0.07 7.43± 0.16

4. CONCLUSION

The performance of keyword spotting (KWS) and speaker
verification (SV) tasks can be boosted by leveraging from
each other. In this paper, we explore a method to extract
the common feature while decoupling task-specific features.
Specifically, we design a two-branch neural network for
KWS and SV, and orthogonality regularization is applied
to decouple latent features between KWS and SV. Our pro-
posed method reaches SOTA. In future work, we will explore
the usability of orthogonality regularization in other tasks,
such as speaker verification and emotion classification; intent
detection and text sentimental classification [24].
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