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ABSTRACT

Ultrasound image classification is important for disease
diagnosis. It is more challenging than usual image classifica-
tion tasks since ultrasound images are difficult to collect and
usually contain lots of noise. This paper proposes a novel
image classification framework for small-scaled and noisy ul-
trasound image datasets. The framework first transforms im-
ages into discrete index grids. The index grids use discrete in-
dices encoding the local texture patterns of the images. Then,
it will conduct classification based on index grids. The pro-
posed framework can significantly reduce the impact of noise
as well as the amount of training data that needed. Comparing
with existing models, the proposed framework is a lite model
and has better explainability. We evaluated the proposed ap-
proach on two public ultrasound image datasets for thyroid
nodule classification and breast nodule classification. The ex-
periment results show that the proposed approach achieves the
new state-of-the-art.

Index Terms— Classification, lite model, quantisation,
ultrasound image, thyroid nodule, breast nodule

1. INTRODUCTION

Ultrasound image analysis and classification play an impor-
tant role in Computer-Aided Medical Systems. They can help
radiologists quickly filter a large number of images, prevent
radiologists from missing important information, reduce the
need for radiologists to interpret images, and support disease
diagnosis. They also can mitigate the problem of lacking
high-quality medical equipment or well-trained radiologists
in less-developed areas.

Ultrasound image classification is more challenging com-
paring to the usual image classification tasks. It has two main
obstacles: 1) lack of large-scaled labelled datasets; 2) the
images contain lots of noise. Collecting ultrasound images
require expensive professional equipment and well-trained
radiologists. Furthermore, annotating the labels of images
is labour intensive. These issues limit the size of available
labelled ultrasound image datasets. However, training deep
learning models requires large labelled datasets. The lack
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Fig. 1. The proposed model transform images to index grids,
then makes the prediction according to the index grids.

of large labelled data is a bottleneck for the use of deep
learning in ultrasound image analysis. Moreover, ultrasound
images usually have low quality and contain lots of noise
(e.g. speckle noise) [1]. They are difficult for human users to
read and neural networks to process.

Work [2, 3] collected large-scaled datasets and trained
deep learning models on them; however, these datasets are
not publicly available. Because of these limitations and chal-
lenges, many recent works [4, 5, 6] used shallow models like
SVM, KNN, and logistic regression rather than deep learning
based models. Some other work [7] manually pre-processed
the images to reduce noises before a neural network model.
How to design novel deep learning based models for small
and noisy ultrasound image datasets still need to be explored.

To bridge the gap, this paper proposes a novel image clas-
sification framework. The proposed framework adopts a two-
step classification architecture. First, it transforms images
into discrete index grids, then, conducts classification based
on the index grids (Fig. 1). Index grids are grids of discrete in-
dices encoding the local texture patterns of the images. When
a classifier does the classification based on the index grids, it
can concentrate on the global information. Since the vector-
formed local texture information is replaced with the indices
(the vector names) the local texture details mixed with noises
are hidden. On the other hand, when a model predicts the
local indices, it can concentrate on the local areas of the im-
ages. Since each image can be divided into many small local
areas, the size of the training data can be largely enriched
and therefore it is effective to train deep learning models on
small-scaled datasets. Therefore, index grids that enabling



local texture quantisation of images can dramatically reduce
the impact of noise as well as the amount of data needed for
model training. Index grids also can facilitate image classi-
fiers to adopt lite models.

2. PROPOSED METHOD

The proposed framework consists of three models, a discrete-
encoder, a classifier, and a recogniser (Fig. 2). The discrete-
encoder improves VQ-VAE [8, 9] to generate the index grids.
The classifier is to predict the image labels based on the index
grids, and the recogniser predicts the index grids.

The discrete-encoder adopts autoencoder-based frame-
work (see Fig. 2), integrating the ResNet [10] and VQ-VAE
[8, 9]. It encodes images (denoted by x) with 256x256 res-
olution to 16x16 grids of latent vectors (i.e. 16 × 16 = 256
latent vectors, denoted by h1, ...,h256). The encoder (E(·))
is formed of bottleneck blocks borrowed from ResNet. The
encoder structure is shown in Fig. 3.

Then, we employ a quantiser (Qe(·)) from the VQ-VAE,
which maintains a group of code vectors (e1, ..., ek), and al-
ways replaces latent vectors with the nearest code vectors.
Given a latent vector h, the quantiser is defined by Eq. 1,
and, each replaced latent vector (h′) can be represented by
the index (id(·)) of the code vector q (Eq. 2).

h′ = Qe(h) = argmin
eq

||eq − h||22, eq ∈ {e0, ..., ek} (1)

q = id(eq), q ∈ [0, k] (2)

We use a decoder (D(·)) to reconstruct the images based
on the replaced latent vectors. Like the encoder, the decoder
is formed of bottleneck blocks, with their convolutional lay-
ers replaced with the transposed convolutional layers for the
upsampling propose. As soon as the decoder is able to recon-
struct images (the reconstructed images x′ is close to x), all
the necessary information (in x) is preserved in the replaced
latent vectors as well as the index grids. The discrete-encoder
is defined by Eq. 3.

h1, ...,h256 = E(x)

h′
1, ...,h

′
256 = Qe(h1), ...,Qe(h256)

x′ = D(h′
1, ...,h

′
256)

(3)

The index grid denoted as z is defined by Eq. 4

z = id(h′
1), ..., id(h′

256) (4)

Comparing to the VQ-VAE (2nd version [9]), we removed
the skip connections to force the decoder to reconstruct the
images only according to the discrete encoding. Compar-
ing to VQ-VAE (1st version [8]) we improve the reconstruc-
tion quality by using the ResNet-based autoencoder and large-
sized latent vectors (hi ∈ R2048, i ∈ [1, 256]). This strategy
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Fig. 2. The components and training process of the proposed
model, where ‘−→’ denotes the discrete encoder training,
‘−→’ denoting the classifier training, ‘−→’ denoting the
recogniser training, and ‘−→’ denoting the testing process.

successfully generates high quality 256x256 images in our ex-
periments, which will be further discussed in § 4 (Fig. 4).

The input of the classifier (F(·)) is the index grids (z) of
the images. Since the indices are discrete symbols, we treat
them as texts and employ a method of text modelling to learn
the embedding of the indices. Here, we uses word2vec [11]
to initialise the embedding vectors (m0, ...,mk) for the in-
dices (0, ..., k). We use a relatively small embedding vec-
tor size (m0, ...,mk ∈ R16) compared to the latent vectors
(i.e. R2048). Specifically, the word2vec model is trained un-
der CBOW architecture, regarding the code vector indices as
words and every 5x5 area in the index grids as the word-bags
(i.e. the contexts).

The classifier F(·) is a lite CNN-based model (see Fig. 3).
It contains original convolutional layers, instance norm layer,
and ReLu layers. Instance norm and ReLu layers are used in
between every two convolutional layers. The classifier F(·)
predicts the image labels in one-hot formed vector (y′).

y′ = F(z) (5)

The recogniser G(·) is also a lite CNN-based model, pre-
dicting the index grids, and reducing the total size of the pro-
posed model by replacing the discrete-encoder. Since the
recogniser no longer uses quantiser, decoder, nor predicting
the entire latent vectors. The recogniser directly estimates the
code vector indices, outputting one-hot formed vectors (de-
noted by t1, ..., t256 ∈ Rk), and the index grids (z) is formed
of the indices corresponding to the largest elements of each
one-hot vector (Eq. 6, where t

(i)
1 denotes the i-entry of t1).

t1, ..., t256 = G(x)

z ≈ argmax
i

t
(i)
1 , ..., argmax

i
t
(i)
256

(6)

The testing process combines Eq. 5 and Eq. 6. The given im-
ages (x) is feed to the recogniser to obtain z, and the classifier
predict the label y′ according to z.
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Fig. 3. The frameworks of our model components. The illus-
tration follows the ResNet [10] – ‘1x1’, ‘3x3’ and ‘4x4’ are
the convolution kernel size followed by the output channel
dimension. The blue blocks denotes the layers with resid-
ual connections (green and red blocks denote the normal lay-
ers). k is the number of indices, and c is the number of label
classes. NB: Qe(·) has no layer so it is not listed in the figure.

3. TRAINING

The discrete-encoder, classifier, and recogniser are trained
separately (Fig. 2). First, we train the discrete-encoder (i.e.
E(·), Q(·), and D(·)), and since it does not require labels, it
can be trained on both the labelled and non-labelled images.
We use L2 loss for the image reconstruction; its code vector
size (i.e. k) is set to 64.

Lrec = ||x− x′||22 (7)

Because there is no gradient can pass the argmin(·) in Eq 1,
we use Straight-Through Estimator [12] to estimate the gra-
dient of h1, ...,h256, which to directly defines the gradient of

h by the gradient of the corresponding eq (i.e. 5h
def
= 5eq ).

Meanwhile, the code vectors in our quantiser also need to be
trained. We also use the L2 loss to let the code vectors be
close to the latent vectors:

Lker =
1

n

n∑
i=0

||hi − eqi ||22 (8)

The entire loss for the discrete-encoder is the combination of
the two losses, which is Ldis = Lrec + Lker.

After the training of discrete-encoder, we use the discrete-
encoder to transform all the images into index grids. Then,
we collect the 5x5 areas of the index grids for the word2vec
training, and obtain the embedding vector for the code vector
indices.

Second, we train the classifier F(·) with the image labels
(y) and the corresponding index grids (z). The index grids of
unlabelled images are not used in this process. In the training
process, the embedding vectors (m0, ...,mk) are allowed to
be updated, and the gradients for each embedding vector are
scaled by the inverse frequency of the symbols in the mini-
batch. The training process uses cross entropy loss.

Lcls = CrossEntropy(y′,y) (9)

Finally, we distil the knowledge from the discrete-encoder
into the recogniser. We use E(·) and Qe(·) as the teacher
model. The student model (i.e. G(·)) is trained to predict the
index grids (z). Unlike normal distil processes (e.g. [13, 14,
15]), we create the soft targets by considering both the out-
comes of E(·) and Qe(·) i.e. the latent vectors and the target
indices (q). Given a latent vector h, the soft target (t(h)) is
created by Eq. 10.

t(h) = δ (id(Qe(h)))−
[
||h− e1||22, ..., ||h− ek||22

]
(10)

The first term (i.e. δ (id(Qe(h)))) denotes one-hot formed in-
dices, the hard target, where δ(·) returns one-hot vector with
its argument referring to the non-zero item. The remaining
term provides extra weights to those indices whose code vec-
tors are close to the latent vector. This aims to encourage the
recogniser to learn the generalisation ability of the discrete-
encoder [13]. The distil training also adopts the L2 loss:

Lrecog = ||G(x)− t(E(x))||22 (11)

4. EXPERIMENTS

We test our model on two open ultrasound image datasets.
DDIT [16] is thyroid nodules classification dataset, con-
taining 602 ultrasound images – 102 benign, 368 malignant
and others are unlabelled. BUSI [17] is for breast nodules
classification. It contains 780 ultrasound images with 437
benign and 210 malignant images. Our models do not use
the nodule boundary information in the experiments. We
compared our model with the existing models which are
trained and tested on the open datasets, and all the selected
models are recently published,including the model based on
SVM[18], FFT/CNN[7], Res-Gan[19], DRS/ResNet[20], and
DenseNet[21]. Because both the two datasets do not pre-split
the images into training and testing sets, like these existing
works, we randomly split the datasets with 80% images for
training and 20% for testing. 5-fold cross-validations were
used in our experiments.

We subtract the margins of the images and resized them to
256x256 resolution (like in Fig. 1). We uses small batch (size
= 16), and AdamW optimiser [22] to train the models, with
learning rate 3e-4, weight decay 1e-2. We only use the ran-
dom horizontal flip to extend the datasets. The training pro-
cesses are stopped when the losses stop decreasing in the next



Model P Sp R/Se F1 Acc Φ

DDTI dataset
FFT/CNN [7] - 65.7 96.1 - 92.1 22M
Res-GAN [19] - 86.5 95.0 - 92.2 10M
SVM [18] - 94.6 88.8 - 93.8 n/a
LTQ (ours) 99.8 99.5 94.5 97.1 95.5 0.1M
LTQ+ (ours) 99.8 99.5 95.7 97.7 96.5 0.1M

BUSI dataset
DRS/ResNet [20]b - 89.7 97.6 - 92.3 47M
DenseNet [21]b 90.0 95.6 92.3 91.4 94.6 29M
LTQ (ours) 85.8 92.4 98.6 91.7 94.4 0.1M
LTQ+ (ours) 86.2 92.7 98.7 92.0 94.6 0.1M

Table 1. Experiment results on DDTI and BUSI datasets. b

denotes the model requires the nodule boundary information.
‘-’ means the papers do not report the corresponding results.

20 epochs. The experimental results (in Table 1) are compar-
ing to the existing approaches. In the tables, P, R, F1, Acc
denote the Precision, Recall, F1-score, and Accuracy respec-
tively, while, Se and Sp are Sensitivity and Specificity (NB:
Recall equals Sensitivity), and Φ denote the number of model
parameters. LTQ denotes our model that is trained on labelled
training data, and LTQ+ denotes the version of our model with
a discrete-encoder that is trained with both labelled training
data and unlabelled images.

We can see that overall our model performed better than
the compared baseline models on both DDTI and BUSI
datasets. The proposed deep learning based models are effec-
tive on small datasets. Meanwhile, our model is a lite model.
It uses 0.1 million trainable parameters, which is significantly
less than other deep learning models. Our model is easy to
be adopted on those medical devices or other IoT devices that
have limited computational capacity.

We also subjectively evaluate the reconstruction quality
of the proposed model. We can see that the reconstructed im-
age of our discrete-encoder is significantly clear than the first
version of VQ-VAE [8], and similar to the second version of
VQ-VAE [9]. This shows that all the necessary information
of the original input images have been preserved in the index
grids. Although the second version of VQ-VAE can recon-
struct high-quality images, it cannot ensure all the necessary
information is preserved in the latent vectors due to using skip
connections.

Finally, we discuss the model explainability via analysing
what indices refer to what texture patterns. Although how
indices map to the pattern is arbitrary, and multiple indices
may refer to the same patterns, the indices should refer to the
patterns near to them, because of the residual connections.
Fig. 5 shows the visualisation of the index grids. There are
64 code vectors (k = 64) for index grids. Numbers (‘0’-
‘9’), lower case and upper case letters (‘a’-‘z’, ‘A’-‘Z’), and
character ’+’ and ’-’ are used to name the code vectors. We

Input image LTQ (ours)VQ-VAE (1st) VQ-VAE (2nd)

Fig. 4. The reconstruction comparison. The images are gen-
erated by our discrete-encoder (LTQ), VQ-VAE (1st [8]), and
VQ-VAE (2nd [9]). Please zoom in to see the difference.

Fig. 5. Images with their index grids, highlighting the pos-
sible mappings between indices and texture patterns. We
can see ‘N’ refers to the nodule calcification, ‘I’ and ‘l’ for
shadow areas, and ‘Y’ for strong reflection areas.

manually coloured the cells to show some obvious mappings.
We can see that the index ‘N’ appears in the areas that the
nodule has the calcification, ‘I’ and ‘l’ are related to shadow
areas, and ‘Y’ may be related to the strong reflection areas.
This shows that the proposed model has certain degrees of
explainability.

5. CONCLUSION

This paper proposed a novel ultrasound image classification
framework through image local texture quantisation. We
used the discrete encoding to separate the classification task
into two steps: first transforming images into index grids,
then conducting the classification based on the index grids.
The framework allows the models to be effectively trained
on small datasets and reduce the impact of noise. We also
showed the proposed discrete-encoder performs better than
VQ-VAE in terms of extracting indices, and discussed the
model explainability through index grids analysis. The ex-
periments conducted on two open ultrasound image datasets
demonstrate the effectiveness of the proposed framework.
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