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ABSTRACT

Self-supervised Speech Models (S3Ms) have been proven success-
ful in many speech downstream tasks, like ASR. However, how pre-
training data affects S3Ms’ downstream behavior remains an unex-
plored issue. In this paper, we study how pre-training data affects
S3Ms by pre-training models on biased datasets targeting different
factors of speech, including gender, content, and prosody, and eval-
uate these pre-trained S3Ms on selected downstream tasks in SU-
PERB Benchmark. Our experiments show that S3Ms have tolerance
toward gender bias. Moreover, we find that the content of speech has
little impact on the performance of S3Ms across downstream tasks,
but S3Ms do show a preference toward a slower speech rate.

Index Terms— Self-supervised Speech Models, SUPERB
Benchmark, Data Bias

1. INTRODUCTION

Self-supervised Learning (SSL) from raw speech has become in-
creasingly popular in recent studies, as SSL achieves state-of-the-
art results on various downstream tasks [1-3]], ranging from speaker
identification, automatic speech recognition, intent classification and
a lot more. Recent work also dive into the interpretability of Self-
supervised Speech Models (S3Ms), as models can be sensitive to
powerful adversarial attacks. Researchers are curious about what
these models have really learned, and most work focus on the ex-
plainability of model mechanisms or learned representations [4-06].
Nevertheless, how pre-training data affects S3Ms is less studied.

Self-supervised pre-training in most works use only standard
datasets, for example, LibriSpeech [7], with carefully collected,
gender-balanced, and clean data. While it is easy to collect a large
amount of unlabeled data, collecting “balanced” data is relatively
hard in practical applications. Besides the most discussed gender
bias, speech data can also be biased in other aspects, such as content
and prosody. However, to our best knowledge, how bias in speech
affects SSL is yet unknown.

In this paper, we present an empirical study on the effects of data
bias on S3Ms at the pre-training stage by creating various datasets.
The performance of S3Ms on different pre-training data is evaluated
by selected tasks from SUPERB Benchmark [8]. Our study in three
aspects of data bias provides the following insights :

1. Gender: We pre-train S3Ms on datasets with different gender
distributions. Our study shows that gender-balanced data is
not necessarily needed for effective pre-training.

*Equal Contribution

2. Content: We pre-train S3Ms on two groups of data with ex-
tremely biased speech content. We find that content has little
effect on the downstream behavior of S3Ms.

3. Prosody: We pre-train S3Ms on datasets with faster or slower
speech rates. Experiments show that S3Ms pre-trained on
slower speech rate lead to better performance overall.

2. RELATED WORK

One of the most often used learning schemes for self-supervised
speech models is through reconstruction speech frames. Here we in-
troduce some of the recently emerged reconstruction methods. The
Autoregressive Predictive Coding (APC) method [9]], is primarily in-
spired by language models (LM) for text. The DeCoAR [10]] method
combines the bidirectionality of ELMo [11]] and the autoregressive
reconstruction objective of APC [9]]. The work of [[12H14]] also adopt
the autoregressive reconstruction scheme, but in some variation. The
Transformer Encoder Representations from Alteration (TERA) [[15]
method, an improved version of Mockingjay [16], is mainly inspired
by masked language models (MLM) [17] for text. The work of
[18H20] also adopt variations of the MLM reconstruction schemes.
In this work, we select two methods to represent each scheme for
our study, the APC method from the autoregressive family and the
TERA method from the MLM family. We select two models for our
study due to space limitations.

Bias and fairness issues in speech are receiving more attention
these days. Demographic bias is the most studied. Recent works an-
alyze the impact of demographic bias as well as mitigating bias on
specific tasks including ASR [21}22]], speaker recognition [23]24].
and speech translation [25H27]]. A large body of research related
to data bias evaluates models on a single downstream task, how-
ever, data bias on S3Ms and its effect on downstream tasks from
diverse categories are not yet explored. A related work analyzing
pre-training data of S3Ms is [28]], which investigates the effect of
domain shift in SSL. Our work differs from theirs in the sense that
we focus on data bias toward different speech factors at pre-training
stage.

3. EXPERIMENTAL SETUP

As we attempt to investigate the impact of pre-training data bias on
S3Ms, the settings for fine-tuning, including fine-tuning data and
hyperparameters, are all the same, the only difference is pre-training
data.

3.1. Pre-trained Upstream Models

For our experiments, we consider two of the most representa-
tive S3Ms, Transformer Encoder Representations from Alteration



(TERA) [15]] and Autoregressive predictive coding (APC) [9].

* TERA: As suggested by the TERA paper, we use two of the
alterations proposed by the authors: time and frequency, and
pre-train models for 200,000 steps with a batch size of 32.

e APC: As suggested by the APC paper, we train APC for 100
epochs with a batch size of 32 and use ADAM optimizer with
an initial learning rate of 10~

3.2. Datasets

We hope to explore how bias toward gender distribution, content,
and prosody can affect S3Ms, therefore, we design various artificial
datasets for pre-training and further evaluate models on downstream
tasks. For faster pre-training and fairness settings, we fix our pre-
training data to 100 hr in all the experiments. We use LibriSpeech
(LS) 100 hr and 360 hr to design the 100-hr datasets with different
biases as below.

3.2.1. Gender

Here, We pay attention to the behavior of S3Ms when pre-training
data is biased toward gender distribution. Thus, we design datasets
with male-to-female ratio as 0:10, 1:9, 2:8, 8:2, 9:1, and 10:0 by ran-
domly sampling files from LS 100 hr and 360 hr. These 6 settings
are denoted as All-F, 9FIM, 8F2M, 2F8M, 1F9M, and All-M re-
spectively. To better interpret the results, we randomly sample three
100-hr datasets for each of the gender distribution settings above.
For 5:5 male to female ratio (denoted as SF5M), we use the original
LS 100 subsel{'_-] as well as 3 random sampled 100-hr datasets from
LS 100 hr plus 360 hr.

3.2.2. Content

In this section, we aim to explore whether pre-training on "complex”
or ’simple” sentences affects S3Ms’ downstream behavior. Here we
use the perplexity (ppl) of the transcription of an utterance measured
from a language model to determine whether a sentence is complex
or simple. We utilize the LS official ARPA language model to cal-
culate ppl for each transcription in the LS 100 hr and 360 hr subset
and create two datasets, 100 hr audio with the highest ppl and 100
hr audio with the lowest ppl, denoted as ppl high and ppl low re-
spectively. Audios in ppl high contain rarer words and proper nouns,
while audios in ppl low are mostly composed of common and simple
words.

3.2.3. Prosody

In addition to gender and content, prosody is also an essential aspect
of speech study. Speech rate is viewed as an important prosodic fea-
ture, hence in this section, we design the datasets based on speech
rates as below. We calculate words per minute (wpm) for each sen-
tence in the LS 100 hr and 360 hr subset using the alignments of
utterances and the provided transcriptions. Similar to the setup in
Section we create two datasets, 100 hr audio with the high-
est wpm and 100 hr audio with the lowest wpm, denoted as wpm
high and wpm low respectively. Moreover, to further investigate the
impact of extreme speech rates on S3Ms, we create two additional
artificial datasets by converting the playback speed of all audio files
in LS 100 hr subset two times faster and two times slower without
altering the pitch. These two datasets are denoted as speed 2x and
speed 0.5x respectively.

!'The original LS 100 subset is gender balanced.

3.3. Downstream Tasks

To evaluate the generalizability and effectiveness of pre-trained
models on diverse tasks, we select five tasks, which are solvable
with linear downstream models, from SUPERB Benchmark [8].
Tasks are carefully chosen as we wish to analyze the effect of data
bias, and linear models serve as the direct indication of the quality
of speech representations.

For the selected tasks, we follow the settings in the SUPERB
Benchmark. The only difference is that instead of using weighted
sum to integrate hidden states from all layers, we directly use the last
hidden state learned from S3Ms. Salient performance gap may oc-
cur for S3Ms with a larger architecture, but since there are only three
layers in both TERA and APC, we observe no huge difference be-
tween features with and without weighted sum on downstream per-
formance. The five tasks can be further categorized into four aspects
of speech: content, speaker, semantics, and paralinguistics:

Phoneme Recognition, PR: LibriSpeech
[7] is adopted. The evaluation metric is
phone error rate(PER).

Content

Keyword Spotting, KS: Speech Com-
mands dataset v1.0 [29] is adopted. The
evaluation metric is accuracy(ACC).

Speaker Identification, SID: VoxCelebl
[30] is adopted. The evaluation metric is
accuracy(ACC).

Speaker

Semantics Intent Classification, IC: Fluent Speech
Commands dataset [31] is adopted. The

evaluation metric is accuracy(ACC).

Emotion Recognition, ER: IEMOCAP
[32] is adopted. The evaluation metric is
accuracy(ACC).

Paralinguistics

4. RESULTS AND ANALYSIS

4.1. Gender
4.1.1. Downstream Behavior

Figure [T] shows that, in general, S3Ms pre-trained on balanced data
achieve the best result; however, pre-training models on gender-
imbalanced data does not always cause a severe degrade in down-
stream performance. At the most extreme setting, namely Al/l-F and
All-M, most of S3Ms perform the worst. But this situation can be
mitigated by adding a small amount of data from the other gender,
which can effectively elevate the performance, models can then be
on par with, or even better than, those pre-trained on balanced data.

The testing sets of selected tasks are approximately gender-
balanced. For further investigation on gender bias during testing,
we split the testing set by gender and evaluate S3Ms on male and
female subsets separately, except for the dataset of KS, where no
demographic information is provided. As such, the overall testing
score will be the average of scores on male and female subsets.

We observe that some tasks seem to be affected more by gen-
der bias, such as PR with APC and SID with both S3Ms. When
pre-training models on datasets with higher male voice ratio, the ac-
curacy on female subset drops rapidly, and vice versa. We conjecture
this is because the diversity of female voice is much higher than that
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Fig. 1: (a) PR (b) KS (¢) SID (d) IC (e) ER

Results (in %) of both S3Ms (TERA and APC) pre-trained on data
with different gender distribution. Data points come with three dif-
ferent shapes, indicating three random sampled pre-training dataset.
The dashed line is obtained by connecting the average of three data
points. In SF5M, the ’x’ marker with bolder outline represents the
LS 100 hr dataset. Notation—‘M’: male, ‘F’: female

All-F 9F1M 8F2M 5F5M 2F8M 1F9M All-M

of male voice. However, we can bridge the gap between the testing
accuracy of the male and female subsets by just adding 10-20 per-
cent of female voice. For other tasks, gender bias is not obviously
presented, for instance, ER is comparatively agnostic to gender bias.

Moreover, figure |I| shows that the behaviors of the models dif-
fer across downstream tasks. In comparison of the two models, the
connected mean line in APC is smoother, while in TERA, the ran-
domness in three random sampled datasets is higher. Still, the overall
performance trend in the selected tasks is fairly alike.

4.1.2. Representation Similarity

Following our results in section we find that the effect on
downstream tasks is not as significant as we originally expected,
even when gender is highly imbalanced in pre-training data. Hence
we are curious whether the representations extracted from S3Ms
pre-trained on different gender-biased datasets are similar. There-
fore, we measure the representation similarity of S3Ms pre-trained
on gender-biased datasets. For similarity measurement, we adopt
Projection Weighted Canonical Correlation Analysis (PWCCA) pro-
posed in [33]], and we use LibriSpeech fest-clean subset.

From figure 2] and figure 3] TERA and APC behave differently
as we take a closer look at the PWCCA score of their upstream repre-
sentations. For TERA, the representations of different gender-biased
datasets are all very similar, yet we cannot see a higher similarity
between two random sampled datasets with the same gender distri-
bution. For APC, the overall similarity between different datasets is
much lower than that in TERA. However, the upper left corner block
and the bottom right corner block show a lighter color, meaning that
the representation similarity increases when the gender distribution
is more similar. For example, the representation of All-F is much
more similar to 9F1M than 1FOM. Also, the similarity is the highest
between different random sampled datasets under the same gender
distribution setting.

While similarity scores for TERA with different gender bias set-
tings are highly alike, we can observe a correlation between gen-
der distribution and its similarity scores for APC. However in both
S3Ms, gender-bias in pre-training data has only a slight effect in
downstream. As a result, there is no obvious relationship between
representation similarity and small gender bias in downstream tasks.

4.2. Content

Table[Tlists the testing results of S3Ms (TERA and APC) pre-trained
on content and prosody bias. Surprisingly, we observe that, for both
TERA and APC, there is little performance difference between pre-
training on either content-biased dataset (ppl high and ppl low), even
evaluated on tasks related to content. For TERA, there is a slight
performance drop across five downstream tasks. But for APC, pre-
training on content-biased data barely degrades the testing results,
and models even outperform the baseline on some tasks such as ER
and IC.

4.3. Prosody

As tablemshows, the performance difference between wpm high and
wpm low on PR, SID, and ER is not obvious. Nevertheless, we see
that data with slower speech rate performs significantly better on KS
and IC, especially in TERA.

For speed 2x and speed 0.5x, a significant difference in down-
stream performance can be observed. Pre-training on speed 2x has a
considerable performance drop across all tasks. While using speed
0.5x for pre-training slightly degrades performance on PR, KS, and



PR KS SID IC ER

PER | ACC 1t ACC + ACC 1 ACC +
pre-train  TERA APC TERA APC TERA APC TERA APC TERA APC
Baseline LS 100 49.64 5045 8523 8890 4620 5694 47.14  64.88 5401  56.90
Coment  PPIHigh 5178 50.73 8397 8828 4254  S418 4427 6567 5385 5846
ppl low 50.94 5017 8299 8848 43.02 5409 4258 6475 5266 5723
wpmhigh  51.60 5197 8137  87.60 4430 54.63 4492 6291 5373  57.62
Prosod wpmlow 5238  S1.1I0 8637 8913 4350 5336 4993  65.12 5436  58.21
OS0%Y  Speed2x 6540 6547 8173 8374 3235 4755 3567 4959 51.89  54.43
speed 0.5x  56.86 5447 84.10 8874 43.16 5192 4656 6515 5443  57.39

Table 1: The testing result (in %) of S3Ms pre-trained on designed datasets. The arrow in the header indicates whether lower/higher score is
better. The bold text denotes the best performance on the column, and the red text denotes the worst performance on the column. Note that

for each task, the performance is only compared with the same model.

10
All-F 1 .n.aa 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.84 0.84
All-F 2 u.aa.u.s? 0.87 0.87 0.87 0.85 0.85 0.85 0.86 0.86 0.85 0.85
9F1M 1 u.s?.n.ss 0.88 0.87 0.86 0.86 0.86 0.87 0.87 0.86 0.85 09
9F1M 2 0.87 u.sa.u.as 0.88 0.85 0.87 0.87 0.87 0.87 0.86 0.86
8F2M 1 0.87 0.88 D.BB.III.EE 0.85 0.88 0.87 0.88 0.87 0.87 0.86
0.8
8F2M 2 0.87 0.87 0.88 n.as.u.as 0.87 0.87 0.87 0.87 0.86 0.86
LS100 085 0.86 0.85 0.85 n.as.n.ss 0.85 0.85 0.86 0.85 0.84
2F8M 1 0.85 0.86 0.87 0.88 0.87 o.es.n.sv 0.88 0.88 0.87 0.87 07
2F8M 2 0.85 0.86 0.87 0.87 0.87 0.85 u.s?.o.en 0.87 0.86 0.87
1FOM 1 0.86 0.87 0.87 0.88 0.87 0.85 0.88 u.a?.u.as 0.87 087
1F9M 2 0.86 0.87 0.87 0.87 0.87 0.86 0.88 0.87 D.SB.D.SB 0.87 0.6
All-M 1 0.85 0.86 0.86 0.87 0.86 0.85 0.87 0.86 0.87 o.ss.n.sv
All-M 2 085 0.85 0.86 0.86 0.86 0.84 0.87 0.87 0.87 0.87 0.87
05
— N A N A N o A N A o & N~
L L s =535 3= 9= =533 s = =
ESE S
o o © © N oNoAoa L

Fig. 2: Similarity heatmap among different gender setting in TERA.
Similarity values are annotated. The number following gender set-
ting indicates different random sampled pre-training data

SID, the performance is on par with baseline in terms of IC and even
achieves better results on ER. Interestingly, pre-training S3Ms on
data with lower speech rate performs better than data with higher
speech rate — 6 out of 10 even outperform the baseline (LS 100).
Results suggest that it is not too harmful to pre-train on data with
extremely slow speech rate, instead, slower speech rate may even be
beneficial to some tasks.

5. CONCLUSIONS

Our work presents an empirical approach for understanding the ef-
fect of biased data on S3Ms. The quality of speech representations
affected by data bias is carefully examined, as we evaluate S3Ms on
a wide range of downstream tasks with linear models. Aside from
downstream modeling, we also measure representation similarity for
more insights, and results show no direct correlation between down-
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Fig. 3: Similarity heatmap among different gender setting in APC.
Similarity values are annotated.

stream behavior and representation similarity. Results on gender bias
show that pre-training data does not need to be gender-balanced to
ensure the best performance on downstream tasks. Furthermore, our
study suggests that pre-training on biased content does not affect
much. Finally, we find that pre-training S3Ms on data with lower
speech rate achieves better performance. For future work, the ef-
fect of data bias can be studied on more S3Ms from different fam-
ilies. We are also interested to explore other aspects of bias, for
instance, single/multiple speakers, synthesized/natural speech, and
noisy/quiet environments.
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