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ABSTRACT

Recent Spiking Neural Networks (SNNs) works focus on an
image classification task, therefore various coding techniques
have been proposed to convert an image into temporal binary
spikes. Among them, rate coding and direct coding are re-
garded as prospective candidates for building a practical SNN
system as they show state-of-the-art performance on large-
scale datasets. Despite their usage, there is little attention to
comparing these two coding schemes in a fair manner. In this
paper, we conduct a comprehensive analysis of the two cod-
ings from three perspectives: accuracy, adversarial robustness,
and energy-efficiency. First, we compare the performance of
two coding techniques with various architectures and datasets.
Then, we measure the robustness of the coding techniques
on two adversarial attack methods. Finally, we compare the
energy-efficiency of two coding schemes on a digital hardware
platform. Our results show that direct coding can achieve bet-
ter accuracy especially for a small number of timesteps. In
contrast, rate coding shows better robustness to adversarial at-
tacks owing to the non-differentiable spike generation process.
Rate coding also yields higher energy-efficiency than direct
coding which requires multi-bit precision for the first layer.
Our study explores the characteristics of two codings, which
is an important design consideration for building SNNs!.

Index Terms— Spiking neural network, rate coding, di-
rect coding, energy-efficiency, adversarial robustness

1. INTRODUCTION

Spiking Neural Networks (SNNs) [1, 2] have gained increasing
attention as a promising paradigm for low-power intelligence.
Inspired by biological neuronal functionality, SNNs process
visual information with binary spikes over multiple timesteps.
The majority of works on SNN’s have so far focused on a static
image classification problem [1] to develop an energy-efficient
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alternative to Artificial Neural Networks (ANNs). Recent
works utilize a backpropagation rule for training and show that
this yields state-of-the-art performance with fewer number of
timesteps compared to other SNN optimization techniques [3].

To convert a static image into binary spike trains, various
coding schemes have been proposed for the image classifica-
tion task [4, 5, 6]. Among them, rate coding and direct coding
are prominent as these coding schemes enable SNNs to be
trained on large-scale datasets [3, 7, 8, 9, 10]. The scalability
of SNNs on large-scale datasets is important considering the
growing demand for processing large-scale data on resource-
constrained devices. Rate coding converts pixel intensity into
a spike train where the number of spikes is proportional to the
pixel intensity [11, 12, 10]. On the other hand, direct coding
uses a trainable layer to generate float value for each timestep
[3, 7, 8, 13]. Following the recent trend, we focus on the com-
parison between rate coding and direct coding even though
they require more spikes than other coding techniques such as
temporal coding [4, 14] (details discussed in Section 2).

In this paper, we objectively compare rate coding and
direct coding in the same experimental settings from three
different perspectives. Note, it is difficult to make a fair com-
parison between these coding schemes from previous works
[3, 7, 8,9, 10] which use different architectures, neuron mod-
els, and hyperparameters. To this end, we first report the
accuracy on various architectures (i.e., multi-layer perceptron,
VGG5, and VGGY) and datasets (i.e., MNIST, CIFAR10, and
CIFAR100). We present the change of accuracy with respect
to the number of timesteps since achieving high performance
in a low-latency regime is one of the important topics in SNN
studies. Adversarial robustness [15] is recently highlighted
as a new feature of SNNs [16]. Kundu ef al. [17] compare
the adversarial venerability of rate/direct coding and present
a method to improve robustness. We explore the adversarial
robustness to provide a better understanding of the advantages
and disadvantages of each coding scheme. Finally, energy-
efficiency is a key evaluation metric for SNNs, therefore we
estimate the energy cost of coding schemes on a digital hard-
ware platform [18].

Our work provides several noteworthy observations for
SNN design. Direct coding yields better accuracy than rate
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Fig. 1. Illustration of rate coding and direct coding with total
timesteps 1" = 5.

coding. The advantage of direct coding increases for deeper
architecture and larger datasets. In terms of robustness, rate
coding shows better robustness with respect to Fast Gradient
Sign Method (FGSM) [15] and Projected Gradient Descent
(PGD) [19] attacks due to the non-differentiable Poisson spike
generator. On the other hand, since the direct coding layer
is differentiable, malicious backward gradients can degrade
the accuracy significantly. Furthermore, rate coding achieves
higher energy efficiency from binary input spikes than direct
coding where multi-bit operation is required.

2. PRELIMINARIES: INPUT CODING SCHEMES

Various coding schemes has been proposed for image clas-
sification with SNN. Temporal coding [14, 4] generates one
spike per neuron in which spike latency is inversely propor-
tional to the pixel intensity. Phase coding encodes temporal
information into spike patterns based on a global oscillator
[20]. Burst coding transmits the burst of spikes in a small-time
duration, increasing the reliability of synaptic communication
between neurons [5]. With these coding schemes, most prior
work successfully train shallow networks, however, they are
difficult to be applied when the network and dataset size are
scaled up. Rate coding can be applied on such large-scale
settings, and therefore recent state-of-the-art methods utilize
this coding [11, 12, 10]. This coding scheme encodes the input
by generating a spike train over 7' timesteps, where the total
number of spikes is proportional to the magnitude of input val-
ues. The spikes are sampled from a Poisson distribution. Fig.
1(a) shows the rate coding mechanism. Direct coding [3] uses
the floating-point inputs directly in the first layer. As shown
in Fig. 1(b), we pass the input image (or RGB pixel values)
through the first convolution layer which generates floating
point outputs. Note, the float output values are repeated for
T time-steps of SNN processing. These outputs are then pro-
cessed through a layer of spiking neurons that generates binary
spikes. Recently, Guo et al. [6] conducted a comprehen-
sive analysis on various coding schemes. However, they use
a shallow 2-layered network with Spike-Timing-Dependent
Plasticity (STDP), which is difficult to apply to deeper models
working on large scale datasets. Also, direct coding has not
been compared to other coding schemes although they are
leveraged in state-of-the-art works [3, 8].

3. RATE CODING VS. DIRECT CODING

In this section, we first present the Leaky Integrate-and-Fire
(LIF) neuron model and training algorithm used in our com-
parison. After that, we analyze the strengths and weaknesses
of two codings from three different perspectives.

3.1. Neuron model

We use LIF neuron for our comparison. The membrane poten-
tial U,,, of LIF neuron stores the temporal spike information.
When an input signal I(t) is given to the LIF neuron, the
membrane potential is varied:

dUp,
L

7 (D

Tm
where, 7, is the time constant for the membrane potential
decay. Since the voltage and current have continuous values,
we convert the differential equation into a discrete version
following the previous works [3, 9]. For each timestep ¢, we
can formulate the membrane potential u! of a single neuron i

as:
1
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Here, the current membrane potential consists of the decayed
membrane potential from previous timesteps and the weighted
spike signal from the pre-synaptic neurons. The notation w;;
is for weight connections between neuron ¢ and neuron j. The
neuron i accumulates voltage and generates a spike output of
whenever u! exceeds the firing threshold 6. After the neuron
fires, the membrane potential is lowered by the amount of the
threshold.

3.2. Optimizing SNN using backpropagation

Various optimization techniques for SNNs have been proposed
in the past decade. Among them, surrogate gradient learning
has been mainly utilized in recent SNN works because it shows
state-of-the-art performance in a low-latency regime [7, 8, 9,
21, 22]. Further, surrogate gradient based backpropagation
learning can be implemented using well-established machine
learning frameworks like PyTorch [23]. In our comparison,
we use surrogate gradient learning as a baseline optimization
technique.

Given input spikes, we train SNNs based on gradient opti-
mization. Intermediate LIF neurons accumulate pre-synaptic
spikes and generate output spikes (Eq. 2). Spike information is
passed through all layers and stacked or accumulated at the out-
put layer (i.e., prediction layer). This enables the accumulated
temporal spikes to be represented as probability distribution
after the softmax function. From the accumulated membrane
potential, we can compute the cross-entropy loss for SNNs.
Based on the calculated loss, we compute the gradients of
each layer [. Here, we use spatio-temporal back-propagation
(STBP), which accumulates the gradients over all timesteps
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Fig. 2. The accuracy change with respect to the number of timesteps. We run each configuration 5 times and report the mean and

standard deviation (vertical line).
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Fig. 3. The adversarial robustness with respect to FGSM attack and PGD attack. We present the clean accuracy using dotted lines.
In the PGD attack experiments, A-PGD[2/255, 1/255,10], B-PGD[4/255, 1/255,10], C-PGD[8/255, 4/255,10], D-PGD[16/255,

4/255,10]. We use timestep 10 for all experiments.

[24]. We can formulate the gradients at the layer [ by chain
rule as:
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Here, O} and U} are output spikes and membrane potential
at timestep ¢ for layer [, respectively. LIF neurons in hidden
layers generate spike output only if the membrane potential u!

exceeds the firing threshold, leading to non-differentiability.

To deal with this problem, we use an approximate gradient:

dot t—0
821. = max{0,1 — |u19 [}. 4)

(2

Overall, network parameters at the layer [ are updated based
on the gradient value (Eq. 3).

3.3. Experimental settings

In our experiments, we use three architectures on (i.e., MLP
784-800-10, VGGS, and VGGY) three public datasets (i.e.,
MNIST, CIFAR10, and CIFAR100). MNIST contains gray-
scale images of size 28 x 28. CIFARI10 consists of 60,000
RGB color images of size 32 x 32. (50,000 for training /
10,000 for testing) with 10 categories. CIFAR100 has the
same configuration as CIFAR10, except it contains 100 cat-
egories. For all datasets, we use random horizontal flip for
data augmentation. Our implementation is based on PyTorch

framework [23]. We set the total number of epochs to 60, 100,
and 100 for MNIST, CIFAR10, and CIFAR100, respectively.
During training, we utilize step-wise learning rate scheduling
with a decay factor of 10 at 50% and 75% of the total epochs.
We train the networks with Adam optimizer with an initial
learning rate le — 4. For LIF neuron, we set time constant 7,,
and threshold 6 to 2 and 1, respectively.

3.4. Accuracy comparison

Fig. 2 shows the accuracy of rate-encoded SNN and direct-
encoded SNN with respect to the number of timesteps. From
the experimental results, we observe the following: (1) In
general, direct coding brings higher accuracy than rate coding
especially with small number of timesteps. (2) As the rate-
coded SNN is trained with larger number of timesteps, the
performance gap between the two coding decreases. (3) As
the dataset and network architecture gets more complicated,
the performance gap between the two coding increases. The
reason for higher performance of direct-coded SNNs is a train-
able input coding layer (Fig. 1(b)). The weights of the coding
layer are trained for minimizing cross-entropy loss, providing
optimal float amplitude.

3.5. Robustness studies

We compare the robustness of rate-coded and direct-coded
SNNss against adversarial attacks. For this work, we consider
two adversarial attacks. FGSM attack [15] is a single-step
attack based on backward gradients. For the input image z,
adversarial image x,4, is generated by adding the sign of
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Fig. 4. A pictorial representation of a PE in a 16-bit Eyeriss
platform for SNN evaluation.

gradients scaled by e:
Tadv = T + € Sign(vm(ﬁ(x7 ytrue)))7 )

where, Y4, stands for the ground-truth label. Projected Gra-
dient Descent (PGD) attack [19] is an iterative adversarial
attack characterized by parameters, such as, maximum pertur-
bation ¢, perturbation step size « and the number of iterations
n. Higher values of €, & and n denote stronger PGD attacks.
In our experiments, we represent the configuration of PGD as
[e, a, n]. In Fig. 3, we compare the robustness of SNNs with
rate coding and direct coding on two architectures (i.e., MLP
and VGGS). Note, for generating adversarial examples for
SNNs with rate coding, we use the method proposed by [16].
Interestingly, we find that rate-coded SNNs have higher ad-
versarial robustness approximately up to 20% higher accuracy
compared to direct-coded SNNs. This is because the Poisson
generator function is non-differentiable, therefore the gradient
has to be approximated, making the attack ineffective.

3.6. Energy-efficiency of two coding schemes

To assess the energy costs incurred by the two coding schemes,
we evaluate our MLP and VGGS5 SNNs on a 16-bit Eyeriss
platform (65 nm CMOS technology) using an output station-
ary dataflow. Eyeriss follows a von-Neumann mode of neural
computation widely adopted in modern accelerators [18, 25].
It enables us to optimize over different design choices such as,
type of dataflow, computation reuse and skipping zero com-
putations. A representation of a processing element (PE) for
the evaluation of SNNs on Eyeriss has been depicted in Fig. 4.
Rate-encoded SNNis also involve a digital circuit for achieving
the Poisson rate coding that is also accounted for in our energy
evaluation [6]. Table 1 shows the normalized energy values
per image for the SNNs, wherein we find that rate coding
yields less energy cost than direct coding by ~ 50%. Here, all
the measured energy values are normalized with respect to a
16-bit Multiply-and-Accumulate (MAC) operation. Primarily,
it is due to the fact that the first layer of the direct-encoded
SNNs has 16-bit data precision and thus, incurs greater com-
putational costs with respect to the rate-encoded SNNs having

Table 1. Energy expended by rate-encoded and direct-encoded
SNNs on an Eyeriss platform normalized with respect to the
energy of 1 MAC operation. We use 10 timesteps for both
architectures.

Normalized energy/image

Scheme MLP/MNIST | VGG5/CIFAR10
Rate coding 8.58E+06 2.73E+07
Direct coding 2.26E+07 4.22E+07

binary spike trains as inputs. Note, the first layer mainly con-
tributes to the total energy cost as deep layers yield highly
sparse spike activation. Moreover, in the standard Eyeriss
architecture, direct coding requires the same full-precision in-
puts and weights for the first layer to be repeatedly fetched T’
times to perform corresponding MAC operations (where, 7T is
total number of timesteps) that add significantly to the energy
expenditure. On the other hand, rate-encoded SNNs with a
sparse distribution of input spikes help reduce the computa-
tions and hence, energy expenditure on the Eyeriss platform.
In order to circumvent the repetition of the full-precision first
layer computations in direct-encoded SNNs, we need to mod-
ify the standard Eyeriss PE to facilitate digital shift operations
for the partial sums generated during MAC. The modification
will alleviate repeated fetches of the same inputs and weights
from the spads (or registers) as well as the cost of multiply
operation for multiple time-steps.

4. CONCLUSION AND DISCUSSION

This study is motivated by the question: Which coding scheme
is better for building accurate, robust, and energy-efficient
SNN, rate coding or direct coding? Note that we focus on
rate coding and direct coding because they enable SNNs to be
trained on large-scale datasets with deep architectures. This
question is timely as neuromorphic researchers are finding a
way of scaling up the SNN models like their ANN counter-
parts. To explore this, we conduct a comprehensive analysis
on accuracy, robustness, and energy-efficiency. Direct coding
trains the weights of the coding layer, therefore the input image
can be converted into the optimal spikes with float amplitude
for minimizing cross-entropy loss. Consequently, direct cod-
ing achieves better accuracy than rate coding where the input
spikes are generated based on pixel intensity. Although the
learnable layer in direct coding improves performance, such
layer is vulnerable to adversarial attack as it conveys malicious
backward gradients to the input image. On the other hand,
Poisson spike generator of the rate coding is non-differentiable
and stochastic, resulting in less performance degradation in
case of adversarial attack. We also find that rate-encoded
SNNs achieve higher energy-efficiency on Eyeriss architecture
than their direct-encoded counterparts. Overall, our extensive
experiments provide a fundamental understanding of the two
coding schemes. We hope this enables researchers to utilize



proper coding schemes according to their specific applications.
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