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ABSTRACT

Staining is critical to cell imaging and medical diagnosis, which is
expensive, time-consuming, labor-intensive, and causes irreversible
changes to cell tissues. Recent advances in deep learning enabled
digital staining via supervised model training. However, it is diffi-
cult to obtain large-scale stained/unstained cell image pairs in prac-
tice, which need to be perfectly aligned with the supervision. In this
work, we propose a novel unsupervised deep learning framework for
the digital staining of cell images using knowledge distillation and
generative adversarial networks (GANs). A teacher model is first
trained mainly for the colorization of bright-field images. After that,
a student GAN for staining is obtained by knowledge distillation
with hybrid non-reference losses. We show that the proposed un-
supervised deep staining method can generate stained images with
more accurate positions and shapes of the cell targets. Compared
with other unsupervised deep generative models for staining, our
method achieves much more promising results both qualitatively and
quantitatively.

Index Terms— Digital Staining, Knowledge Distillation, Unsu-
pervised Learning, Generative Adversarial Networks

1. INTRODUCTION

Staining is a key process in cell imaging and medical diagnosis
where clinicians could evaluate the morphological and chemical
information in a microscopic setting based on enhanced imaging
contrast. Hematoxylin and Eosin (H&E) is the most commonly used
dye staining technique [1]. However, the H&E staining process
can be quite time-consuming and expensive in practice, i.e., taking
around 45 minutes and costing about $2-5 per slice [2]]. Further-
more, though standard H&E protocols have been established, the
cell staining outcomes usually vary in different histopathology labo-
ratories subjective to the specific staining conditions, which degrade
the downstream diagnosis. As staining is an irreversible process,
one needs to prepare new cell samples and conduct re-staining from
scratch once the results are unsatisfied.

To mitigate these limitations of physical staining, recent works
proposed deep learning methods for digital staining for microscopy
cell images captured by Quantitative phase imaging (QPI) [2], Aut-
ofluorescence imaging [31/4} 5] and whole slide imaging (WSI) [6].
Compared to these imaging techniques, dark-field imaging rejects
the unscattered background light from the sample, thus preserving
the best imaging contrast for transparent and thin samples. It re-
mains unclear if deep digital staining can be applied for dark-field
cell image staining with its unique image properties and distribu-
tion. Furthermore, existing deep learning methods for digital stain-
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Fig. 1: Examples of the dark-field and bright-field images from our
proposed digital staining dataset (DSD).

ing are all supervised [2,13} 14,15 16], i.e., they all require a large-scale
dataset of perfectly aligned staining pairs of cell images for model
training. In practice, it is extremely challenging to obtain such a
dataset because (1) One can hardly maintain the same orientation
of cell samples in different imaging trails, which inevitably intro-
duces rotational and translational deviations in the staining image
pairs even for same tissue block; (2) The physical staining process
always deforms the tissue constituents, making it almost impossible
to pair the bright-field and dark-field images precisely. As a result,
the stained cell images using the supervised methods will be signifi-
cantly degraded due to inaccurate pairing, leading to mistakes in the
subsequent medical diagnosis.

In this work, we present a novel digital staining scheme for dark-
field cell images using unsupervised deep learning. Different from
all existing digital staining methods, the proposed method does not
require any paired and aligned unstained/stained images for train-
ing. We propose to decompose the staining task into image light en-
hancement and colorization problems, sequentially. Based on such a
staining model, we first enhance the dark-field cell images by match-
ing their illuminance distribution to the target bright-field images,
followed by training a teacher model to approximate the light en-
hancement process. After that, a novel color-inversion distillation
is applied to obtain a student generative adversarial network (GAN)
with hybrid non-reference losses, which can simultaneously transfer
the color style and preserve the consistency of structural informa-
tion in digital staining. To our best knowledge, this is the first deep
unsupervised learning method for digital staining of dark-field im-
ages. Furthermore, for benchmarking various digital staining meth-
ods for dark-field microscopy cell images, we propose the first real
cell-image Digital Staining Dataset (DSD), including the sets of un-
stained dark-field and stained bright-field images, respectively, with-
out pairing. Fig. [T] shows some examples, with diverse tissue struc-
tures, in our dataset. Experimental results demonstrate the effective-
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Fig. 2: The overall structure of our method. With a dark-field image x, the enhanced image is given by z = H(x), then the generator G
outputs the predicted image y = G(z). Notes that the generator G also serves as the student network in knowledge distillation.

ness of our method with its superior performance over the proposed
staining dataset compared to the popular unsupervised deep genera-
tive models. Our major contributions can be summarized as follows:

* A new dataset for digital cell image staining with unpaired
real dark-field unstained and bright-field stained images.

* A novel deep digital staining method for dark-field cell im-
ages, which incorporates GAN and knowledge distillation.

* An effective implementation of deep digital staining which
provides state-of-the-art results without supervised training.

2. RELATED WORKS

Digital staining. Learning-based methods achieve superior perfor-
mance on digital staining recently, which have explored different
modalities for unstained images, e.g., quantitative phase microscopy
images [2], autofluorescence images [3\ 14, 5], and whole slide im-
ages [6]]. However, these methods are all supervised, i.e., using mod-
els that are trained on aligned staining image pairs.

Image colorization. Image colorization aims to learn a mapping
function from a grayscale image to the corresponding color counter-
part, which is a typical ill-posed inverse problem since one grayscale
image may correspond to multiple potential color outputs. As the
development of deep neural networks in recent years, colorization
methods are generally learning based [7} 8l 9 [10]]. For instance, the
pioneer works [7, 18] proposed an effective backbone with a simple
pixel-wise ¢; loss. After that, Wu et al. [10] employed generative
color prior as guidance. Su et al. [|9] used pre-trained networks for
object detection to achieve better semantic representation.

Knowledge distillation for image-to-image translation. Knowl-
edge distillation intends to promote the training of student model un-
der the supervision of a teacher model. Image-to-image translation
have been widely used in the area of image processing [11 {12} [13]].
Several works have been proposed about using knowledge distilla-
tion in image-to-image translation tasks [[14} [15| [16]. Li et al. [14]
minimize the Euclidean distance between the latent features from

teacher and student models. Chen et al. [15] distills the generator and
the discriminator simultaneously in GAN. Jin et al. [16] conducts
distillation on intermediate features of the generator with global ker-
nel alignment.

3. PROPOSED METHOD

3.1. Problem Formulation

Given an unstained dark-field image x, digital staining aims to ob-
tain the stained bright-field image y with better visibility. In this
work, we recast the digital staining task as the sequential light en-
hancement and image colorization problems which is formulated as

y=G(Hx)), 1)

where #(-) and G(-) denote the light enhancement and colorization
modules, respectively, which can sequentially map the dark-field im-
age x to the corresponding bright-field grayscale image z = H(x)
and then transfer it into the stained counterpart y = G(z).

Figure2]shows our proposed digital staining pipeline, including
a light enhancement module as H(-), correspondingly, to enhance
the input dark-field unstained image (details refer to Section [3.2).
After that, a deep generator G(-) is to map from the unstained to
stained domain. To preserve the structural details, we propose a
color-inversion distillation mechanism to ensure data fidelity using
the unsupervised strategy (details refer to Section[3.3).

3.2. Histogram Matching for Light Enhancement

The cell regions are usually brighter than the background in dark-
field unstained images, while they are darker than the background
in the bright-field stained images. Thus, we have the assumption
that the cell regions in dark-field unstained images and bright-field
stained images have an approximately reverse illuminance relation-
ship. We propose to match the illuminance distribution of enhanced
outputs to that of the bright-field images.
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Fig. 3: Light Enhancement via histogram matching from dark-field
to enhanced images. c is the same for both 1 — c4(x;) and c¢p(2;).

Histogram matching is a classic method which is widely used
in imaging processing tasks such as camera color correction[17]] and
SDR-to-HDR imaging and tone mapping [18]]. In our task, the map-
ping from the illuminance distribution of dark-field images to bright-
field images is done in an inverse way. We use ¢, and cq to indicate
the cumulative distribution function of illuminance distribution of
bright-field and dark-field images respectively. For pixel illuminance
value x; from x where 7 represents the pixel coordinates, let z; be
the grayscale intensity of the corresponding pixel in enhanced image
z. Then we have c(z;) = 1 — ca(x;), 50 z; = ¢, (1 — ca(xi)).
Based on such an intensity mapping, we can obtain the enhanced
cell images as z = H(x), leading to much better visibility compar-
ing to the dark-field unstained images as shown in Figure [3| Thus,
the enhanced z will be used as the input for the following stage.

3.3. Color-Inversion Distillation for Data Fidelity

To preserve image structural information, we propose to employ a
pre-trained colorization network G; as the teacher model. As shown
in Figure2] we simulate the gray-color training pairs according to in-
verse the existing stained images into gray (unstained) counterparts.
These synthetic data will be used to pre-train the teacher model G;
using pixel-wise ¢; loss. Given an enhanced cell image z as the
input, we simultaneously feed them to the teacher model G; and stu-
dent model G, achieving the outputs y; and y, respectively. We use
a knowledge distillation loss L4 to minimize the error distance be-
tween y; and y, which is defined as the following:

Lra = 9(2) = Ge(2)]1 - )

Besides, we apply the multi-scale discriminators as the extra supervi-
sion to encourage the output to be visually similar to the real stained
images, by solving the following problem:

Ladv == Z EGAN(g7Dk) 5 (3)

k=1,2

where L an follows the EnlightenGAN [19], D; is the global dis-
criminator, D> is the local discriminator. Note that, we only use the
distilled student network in the inference stage. Besides, to further
align the cells’ position in output images y with the enhanced images
z, we employ the content consistency loss L.on between enhanced
images z and the grayscale image of predicted digital staining image
Ygray as follows:

Efcon = HZ - YgrayHI . (4)

By combining the above losses, the hybrid objective function £
that we use to train the student model is formulated as

,C = £adv + )\1£kd + )\2£CO’VL 9 (5)

where A1 and A2 are the weighting coefficients to balance the influ-
ence of each term.

Method | FID] KID| NIQE| LPIPS]
EnlightenGAN [19] | 17247 0.09868 24.7072  0.46890
CycleGAN [20] 150.03  0.09356  8.9616  0.65444
CUT [20] 164.70  0.09704  20.7457  0.59508
Ours 14734  0.08120 7.1665  0.33964

Table 1: Quantitative evaluation of the digital staining results over
the proposed DSD dataset.

4. EXPERIMENTS

4.1. Implementation Details and Setups

Dataset preparation. As previous digital staining works haven’t
shared their dataset and there’s no public datasets with unstained
dark-field images and stained bright-field images of same human tis-
sue to the best of our knowledge, we collect a new Digital Staining
Dataset, dubbed as DSD, with two unpaired subsets, i.e., unstained
dark-field and stained bright-field image subsets, as shown in Fig-
ure[T} Our training set contains 559 unstained dark-field images and
stained bright-field image pairs with 256 X 256 resolutions taken
from different tissue structures. The teacher model G; is trained by
bright-field images in the training set. To better evaluate the per-
formances of our proposed algorithm, we also collect a testing set
including 40 images with the same resolution of the training images.

Implementation details. We have implemented the proposed
model using PyTorch [22]. The generator network G is based
on basic blocks from ResNet [23]. G consists of one convolution,
two 2-stride convolutional layers , nine residual blocks and two
fractionally-strided convolutions with stride % and one convolution
inspired by [20], which has impressive effects in many image-to-
image translation tasks. For teacher colorization network G:, we
use a U-Net based network following [8]]. The teacher network is
trained with 559 bright-field images in the training set. We adopt
Adam optimizer [24] for loss minimization, with initial learning rate
set to 0.0001 for 200 epochs, followed by another 100 epochs with
learning rate linearly decayed to 0. For weight coefficients, we set
A1 = A2 = 10.

Evaluation metrics. We opt for perceptual metrics including
NIQE [25], FID [26], and KID [27]] for evaluation. Due to the
domain gap between cell images and natural images, we employ
the stained bright-field image set as the reference. Besides, we also
adopt LPIPS [2§]] to evaluate the performance on preserving the
content information from the input image. Specifically, we calculate
the LPIPS between the grayscale image of predicted bright-field
image ygray and the corresponding enhanced image z. For all these
metrics, a lower value indicates better visual quality.

4.2. Comparison With Existing Methods

As we are the first work of unsupervised method on digital staining,
no existing digital staining methods can compare to. We select sev-
eral recent unsupervised image-to-image translation methods, i.e.,
EnlightenGAN [19], CycleGAN [20], and CUT [21], as the com-
peting methods. For a fair comparision, we re-trained all competing
methods on the training set of our DSD dataset. Table[] shows the
quantitative results, in which the proposed method outperforms all
competing methods for both image quality and data diversity. The
visual examples have been demonstrated in Figure ] Enlighten-
GAN and CycleGAN fail to distinguish cells and background part,
thus predict cavity where supposed to be cells. CUT predicts cells
with rough edges and fake cavity areas. Our method can generate
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Fig. 5: Visual examples of ablation study, including input dark-field
image x (left) and its corresponding % 10 version (right) in the top-
left subfigure, the enhanced image z, and the results from teacher
network G¢(z). Results of four ablation experiments correspond to
the numerical order in TableEl

the stained bright-field image with complete structural information,
like position and shape of cells and cavities.

4.3. Ablation Study

The effect of different loss functions. We thoroughly investigate
the impact of each loss function applied in the training stage. Ta-
ble 2] shows the evaluation results and Figure [3] demonstrates the
visual examples with different loss functions. We first remove the
knowledge distillation loss L4 and replace the content consistency
loss Leon with the VGG-based perceptual loss £’ con, denoted as @
in Table|2| Here the applied perceptual loss can be written as

£lcon = ||¢’n(z) - d)n(}’gruy)”l ) (6)

where ¢, denotes the n-th layer map of the VGG-16 model pre-
trained on ImageNet. In our experiment, we choose the first convo-
lutional layer after the fifth pooling layer of VGG-16 and the weight
assigned to £ o, equals to 1 following the settings from [19]. We
find that the position of the cells has almost all shifted with only
perceptual loss as shown in Figure 3] Then we verify the effective-
ness of the knowledge distillation loss Lxq, in which we remove the
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Fig. 4: Visual comparison of digital staining results over DSD using our proposed method, as well as other deep unsupervised methods,
including EnlightenGAN[19], CycleGAN[20], and CUT|21]]. For each of dark-field images (leftmost column), the illuminance of its right

| Leon L'con Lrq| TypeofG | FID, KID| NIQE| LPIPS|
@ v ResNet [23] | 172.80 0.13479 9.7733 0.54746
@ v ResNet [23] | 181.84 0.14736  9.3443 0.50864
®| v v/ | EG[I9] |159.19 0.08621 10.5326 0.31524
@ v v/ | ResNet [23] | 147.34 0.08120 7.1665 0.33964

Table 2: Quantitative comparison for the ablation study. The results
of the model @ with only the VGG-based perceptual loss £ con,
@ with only the content consistency loss, ® replacing the student
model using EG (EnlightenGAN [19]), and @ the complete model.
Note that all variant models include the adversarial loss Lqqy.

L1.q and preserve the content consistency 1oss Lcon, denoted as @
in the Figure[3] The shape and size of cells still cannot be consistent
with the original dark-field image if removing the L4, comparing @
and @ in Figure Besides, according to the quantitative results in
Table[2] the stained image quality and diversity would be degraded.

The effect of different student model. To justify our choice of
student model, we compare the performance of our method with the
student model replaced with the generator followed by [19]. The
corresponding result is shown in @ of Figureand TablelZl We can
see the choice of generator network improves the visual quality in
background area in some images especially.

5. CONCLUSION

In this paper we propose a novel unsupervised digital staining
method learning from unstained dark-field images to H&E stained
bright-field images. We use knowledge distillation loss and content
consistency loss to preserve the structural information consistency,
and generative adversarial network architecture to encourage the
output visually similar with real stained images. With unsuper-
vised learning framework, our method can be trained with unpaired
data. Experimental results also demonstrate that our method achieve
the superior performance compared to all competing methods and
variants, with the style of H&E stained images while keeping the
structural information. We propose and will release a new dataset
of unpaired real dark-field unstained and bright-field stained cell
images.
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