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ABSTRACT

Multitask learning (MTL) can utilize the relatedness between multiple tasks for performance im-
provement. The advent of multimodal data allows tasks to be referenced by multiple indices. High-
order tensors are capable of providing efficient representations for such tasks, while preserving struc-
tural task-relations. In this paper, a new MTL method is proposed by leveraging low-rank tensor
analysis and constructing tensorized Least Squares Support Vector Machines, namely the tLSSVM-
MTL, where multilinear modelling and its nonlinear extensions can be flexibly exerted. We employ
a high-order tensor for all the weights with each mode relating to an index and factorize it with
CP decomposition, assigning a shared factor for all tasks and retaining task-specific latent factors
along each index. Then an alternating algorithm is derived for the nonconvex optimization, where
each resulting subproblem is solved by a linear system. Experimental results demonstrate promising
performances of our tLSSVM-MTL.
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1 Introduction

Multitask learning (MTL) lies on the exploitation of the coupling information across different tasks, so as to benefit
the parameter estimation for each individual task [1,3,20]. MTL has been widely applied in many fields, such as social
sciences [5, 6, 19], medical diagnosis [7, 14], etc. Various MTL methods have been developed and shown promising
performance for related tasks. Among them, support vector machines (SVMs) get great success [4]. Specifically, based
on the minimization of regularization functionals, the regularized MTL is proposed in [5, 6] with kernels including
a task–coupling parameter. An MTL method based on SVM+, as an extension of SVM, is developed in [8] and
compared with standard SVMs in [7] and regularized MTL in [14]. Moreover, the least squares SVM (LSSVM) [15]
is also generalized for MTL [19], where the inequality constraints in SVMs are modified into equality ones and a
linear system is solved in dual instead of the typical quadratic programming. These SVM-based MTL methods were
all applied with the typical vector/matrix expressions.

Tensors, a natural extension for vectors and matrices, provide a more effective way to preserve multimodal information
and describe complex dependencies [9, 10]. Different usages of tensor representations have been successfully applied
to MTL [13, 17, 18, 21–25]. For instance, motivated by the multidimensional input, [25] proposed to factorize the
weight tensor for each task into a sparse task-specific part and a low rank shared part. In [18], it formulates the input
as a tensor and extracts its spatial and temporal latent factors, based on which a prediction model is built. It is also
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intriguing to encode the projection matrices of all classifiers into tensors and apply tensor nuclear norm constraints for
task relations [21, 23].

The aforementioned works are all set with a single index for the involved tasks. In practice, tasks can be referenced
by multiple indices with physical meanings. Taking a multimodal data task for example, restaurant recommendations
consider different aspects of rating (e.g., food and service) and customers. It naturally leads to T1×T2 tasks spanned by
two indices, and thus a single index fails to preserve such information. Therefore, [13] considered tasks with multiple
indices and imposed low Tucker rank regularization over the stacked coefficient tensor to explore task relations. In
[13], the applied Tucker decomposition can suffer from a dimensionality curse if the tensor order increases. For
rank minimization, a convex relaxation is used to handle the whole weight tensor in each iteration and thereby can
be problematic for large-scale data. Two variants were later developed in [17, 24] with different convex relaxations
for Tucker rank minimization. Though nonconvex optimization was also considered in [13], it required adjusting
several ranks within Tucker, making the tuning procedures rather complicated. Besides, they all considered multilinear
modelling, while nonlinearity is highly desirable for well describing complex data and tasks.

In this paper, we develop a tensorized MTL method for regression by leveraging LSSVMs, namely the tLSSVM-MTL,
which constructs a high-order weight tensor on LSSVMs and indexes the tasks along different modes into groups by
multiple indices. Unlike [13, 17, 24], we factorize the constructed tensor into CP forms since the factors are easy to
explain from subspace perspective, and enable all tasks to share a common latent factor and meanwhile retain task-
specific factors. In our method, both linear and nonlinear feature maps (or kernels) can be flexibly employed. For
optimization, an alternating minimization strategy is proposed with each subproblem solved by a linear system in the
dual. Numerical experiments show advantageous performances of our tLSSVM-MTL over matrix-based and existing
tensor-based MTL methods.

The next section gives some premieres. Section 3 presents the modelling and optimization for our tLSSVM-MTL.
Experimental results and conclusions are in Sections 4 and 5.

2 Preliminaries

Scalars, vectors, matrices, and tensors are represented as x, x, X, and X , respectively. For clarity, we denote the row
and the column in a matrix X as X[i, :]T = xi,: and X[:, j] = x:,j .

CP decomposition [2, 12] Given a tensor X ∈ RI1×···×IN , CP decomposition factorizes the tensor into a summation
of several rank-one components as X =

∑K
k=1 u

1
k ◦ · · · ◦ uN

k , where K is the CP rank indicating the smallest number
of rank-one components required in this representation. We represent the CP decomposition as X = [[U1, . . . ,UN ]]
with Un = [un

1 , . . . ,u
n
K ] for n = 1, . . . , N .

LSSVM LSSVM [15] is a variant of SVMs [4] by forming equality constraints. For regression with data {xi, yi}mi=1,
the primal problem of LSSVM is given as:

min
w,b,e

J (w, b, e) = C
2

∑m
i=1 (ei)

2
+ 1

2w
>w

s. t. w>φ(xi) + b = yi − ei,
where φ : Rd 7→ Rdh is the feature mapping function, w ∈ Rdh and b ∈ R are the modelling coefficients, ei denotes
the point-wise regression error, and C > 0 is the regularization hyperparameter. In LSSVMs, the Lagrangian dual
problem gives a linear system, instead of the quadratic programming in classic SVMs, making certain problems more
tractable.

3 Tensorized LSSVMs for MTL

3.1 Tensorized Modelling

Assuming T tasks are involved with data {xt
i ∈ Rdt , yti ∈ R}mt

i=1, T sets of parameters {wt, b
t}Tt=1 are thereby

required for predictions in MTL. Here we focus on homogeneous attributes with dt = d. Thus, the complete weight
matrix is W = [w1; . . . ;wT ]. Instead of using a single index for these T tasks, multiple indices for an efficient and
structured representation can be considered to construct a higher-order tensor [13]. In this paper, the weight tensor
is constructed as W ∈ Rdh×T1×···TN and we factorize it into CP form for the structural relatedness across different
tasks, such that:

W =
∑K

k=1
l:,k ◦ u1

:,k ◦ · · · ◦ uN
:,k = [[L,U1, . . . ,UN ]], (1)
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· · ·
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→
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dh
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Figure 1: An illustration on our tensorized representations.

where L = [l:,1; · · · ; l:,K ] ∈ Rdh×K is the shared factor exploiting coupling information across tasks, Un =
[un

:,1, . . . ,u
n
:,K ] ∈ RTn×K corresponds to the n-th index with un

:,k = [un1,k, . . . , u
n
Tn,k

]>. The task-specific coeffi-
cient is thus formulated as:

wt =
∑K

k=1
l:,k · u1t1,k . . . uNtN ,k. (2)

Each task is now spanned by N indices, i.e., t = t1, . . . , tN with tn = 1, . . . , Tn, n = 1, . . . , N , so that the total
number of tasks is calculated by T =

∏N
n=1 Tn. Fig. 1 gives a graphical illustration for a third-order case.

It is explicit that {l:,1, · · · , l:,K} learns the coupling information across tasks and is always involved in the prediction
for each task. In contrast, the variation of un

tn,: affects a certain group of tasks relating to the index tn. For instance,
for n = 1, t1 = 1, the updating of u1

1,: affects tasks in {t = 1, . . . , tN |tl = 1, · · · , Tl, l 6= 1}. In other words, the
correlations between tasks can be explored by splitting them into different modes (indices) with a high-order tensor,
enabling structural captures of dependencies from multiple modes than using a single mode. In this way, CP rank K
indicates the number of latent shared features l:,k in this representation. With the imposed low CP rank, the learned
coefficients can be more compact in gaining informative modelling.

Then, our tensorized LSSVM for MTL regression, i.e., tLSSVM-MTL, is constructed in the primal form as:

min
L,Un,bt,eti

C
2

T∑
t=1

mt∑
i=1

(eti)
2 + 1

2 trLL> + 1
2

N∑
n=1

trUnUn>

s.t. (
∑K

k=1(l:,k · u1t1,k . . . uNtN ,k))>φ(xt
i) + bt (3)

= yti − eti, t = t1, . . . , tN .

With the constructed tensor and the deployed factorization, our proposed tLSSVM-MTL successfully extends the exist-
ing LSSVMs to deal with multitasks referenced by multiple indices; the low CP rank factorization enables to explicitly
attain the shared factor L seeking for common information and these Un maintaining task-specific information, which
together boosts the overall performance of all tasks.

3.2 Optimization Algorithm

In (3), the product operations between the shared L and the task-specific U1, . . . ,UN result in nonconvexity, but can
be decoupled by block coordinate descents. We thus design an alternating updating strategy to optimize each factor
iteratively, where each subproblem successfully degenerates to be convex by solving a linear system with Lagrangian
duality.

1) Step L, bt, eti with fixed Un. The primal problem with respect to L, bt, eti is given by

min
L,bt,eti

C
2

∑T
t=1

∑mt

i=1 (eti)
2

+ 1
2 tr(LL>)

s. t. (
∑K

k=1 (l:,k · ut,k))>φ(xt
i) + bt = yti − eti,
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where ut,k , u1t1,k · · ·uNtN ,k for t = t1, . . . , tN , tn = 1, . . . , Tn. With dual variables αt
i ∈ R corresponding to each

equality constraint, the Lagrangian function is obtained as

L
(
L, bt, eti

)
=
C

2

∑T

t=1

∑mt

i=1

(
eti
)2

+
1

2
tr(LL>)−

∑T

t=1

∑mt

i=1
αt
i((Lut)

>
φ(xt

i) + bt − yti + eti),

with ut , [ut,1, . . . , ut,K ]> ∈ RK . Then, stationary point conditions are obtained as

∂L
∂L

= 0 =⇒ L =
∑T

t=1

∑mt

i=1
αt
iφ(xt

i)u
>
t ,

∂L
∂b

= 0 =⇒ A>α = 0, b =
[
b1, . . . , bT

]>
,

∂L
∂e

= 0 =⇒ Ce = α,

∂L
∂α

= 0 =⇒ Φw + Ab = y − e.

where A = blockdiag(1m1
, · · · ,1mT

) ∈ Rm×T , w = [(Lu1)>, · · · , (LuT )>]> ∈ RTdh , the task-specific fea-
ture mapping matrix Φt = [φ(xt1), . . . , φ(xtmt

)]> ∈ Rmt×dh and Φ = blockdiag(Φ1, · · · ,ΦT ) ∈ Rm×Tdh for
all T tasks. All outputs, regression errors, and dual variables are denoted as y = [y11 , y

1
2 , . . . , y

T
mT

]> ∈ Rm,
e = [e11, e

1
2, . . . , e

T
mT

]> ∈ Rm, and α = [α1
1, α

1
2, . . . , α

T
mT

]> ∈ Rm, respectively.

By eliminating L and eti, a linear system is attained as:[
0T×T A>

A Q + 1
C Im×m

] [
b
α

]
=

[
0T

y

]
, (4)

where Q ∈ Rm×m is computed by the components in tensorW and the kernel function k : Rd ×Rd 7→ R induced by
φ(·), such that Q(j, j′) = 〈ut,uq〉 k

(
xt
i,x

q
p

)
, j =

∑t−1
r=1mr + i, j′ =

∑q−1
r=1mr + p, i = 1, · · · ,mt, p = 1, · · · ,mq

with i, p indexing the samples in the involved tasks t and q, respectively. With the solution of dual variables (4), i.e.,
α̃, we can get the updated L =

∑T
t=1

∑mt

i=1 α̃
t
iφ(xt

i)u
>
t .

2) Step Un, bt, eti with fixed L. With fixed L, we alternate to optimize Un, bt, eti. The corresponding primal problem
is:

min
un

tn,:,b
t,eti

C
2

∑
t∈Stn

∑mt

i=1 (eti)
2

+ 1
2‖un

tn,:‖22

s. t. un
tn,:
>zti + bt = yti − eti,

where zti is calculated by L>φ(xt
i)� u1

t1,: � · · ·un−1
tn−1,: � un+1

tn+1,: � · · ·uN
tN ,: ∈ RK , the involved tasks t is contained

in the index set Stn = {t1, . . . , tN |tl = 1, . . . , Tl, l = 1, . . . , N, l 6= n} with cardinality |Stn | =
∏

l,l 6=n Tl. With dual
variables λtn , we have the Lagrangian function:

L
(
un
tn,:, b

t, eti
)

=
C

2

∑
t∈Stn

∑mt

i=1

(
eti
)2

+
1

2
‖un

tn,:‖22 −
∑

t∈Stn

∑mt

i=1
λti

((
un
tn,:
>zti + bt

)
− yti + eti

)
,

where λtn = {λti|t ∈ Stn , i = 1, . . . ,mt} ∈ RMtn corresponds to the involved constraints in optimizing un
tn,:.

Similarly, by deriving the stationary conditions and eliminating un
tn,: and eti therein, we get the linear system:[

0|Stn |×|Stn | A>tn
Atn Qtn + 1

C IMtn

] [
btn
λtn

]
=

[
0|Stn |
ytn

]
, (5)

where Atn = blockdiag(1mt
) ∈ RMtn×|Stn | with t ∈ Stn , and ytn , αtn ,btn ∈ RMtn are vectors collecting yti ,

αt
i, and bti involved in the equality constraints, respectively. Here, the matrix Qtn ∈ RMtn×Mtn is computed by

Qtn(j, j′) =
〈
zti, z

q
p

〉
, where t, q ∈ Stn , i = 1, . . . ,mt, p = 1, · · · ,mq .

The proposed alternating algorithm gives the final solutions after convergence. In this paper, we set the convergence
condition for factors Un, such that

∑
n‖Un

k+1 −Un
k‖2F/‖Un

k‖2F< 10−3. After optimization, the prediction for any
given input x of the t-th task is obtained either with

• the expression 1) using explicit feature map φ(·):

ft(x) = (Lut)
>
φ(x) + bt (6)
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• the expression 2) using kernel function k(·, ·):

ft(x) =
∑mq

p=1

∑T

q=1
λqpk(x,xq

p)〈ut,uq〉+ bt. (7)

Note that expression 1) is the primal representation, while expression 2) is not strictly the dual representation, due to the
existence of parameters ut,uq in the primal. This is because the optimization algorithm alternates to update different
factors of the tensor and the resulting Lagrangian dual forms correspond to each subproblem during iterations, not to
the original nonconvex problem (3). Nonetheless, the problem can be efficiently resolved by sets of linear systems,
and both expressions 1) and 2) consider correlations across tasks and task-specific information.

4 Numerical Experiments

We evaluate the performance of the proposed method on both synthetic and real-world data. Root mean square error
(RMSE), Q2, and the correlation of the predicted ŷ and the ground-truth y are measured, where Q2 is defined as
1−‖y− ŷ‖2F/‖y‖2F and each iterative method is repeated 10 times for an average. Except for RMSE, a higher metric
value indicates a better result. There are three hyperparameters to be tuned in our tLSSVM-MTL, i.e., K, C, and the
kernel function, and the hyperparameters in the compared methods are also tuned, where 5-fold cross-validation is
used.

1) Simulated data

The simulated dataset is generated as: 1) the coefficient tensor via the CP form W = [[L,U1, · · · ,UN ]], where
each entry is randomly generated from N (0, 1); 2) xt

i, b
t and noise eti from distribution N (0, 1); 3) the response

yt = yt + σet consisting of yt = Xt
∑K

k=1 lk · u1t1,k . . . uNtN ,k + bt1mt and et given by the signal-to-noise ratio
(SNR). We set d = 100, N = 3, T1 = 3, T2 = 4, T3 = 5 with T = 60 tasks, K = 3, and 60 training samples and 20
test samples for each task.
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Figure 2: Performance on simulated data with different SNRs.

This experiment mainly aims to validate the efficacy of our tensorized tLSSVM-MTL and optimization results of the
proposed algorithm; thus, the MTL-LSSVM counterpart is compared. Fig. 2 presents the performance evaluations
on simulated data with different SNR levels, showing that the proposed tLSSVM-MTL consistently provides more
accurate predictions on varied SNRs, and its advantage is slightly better with larger SNRs. Additionally, we plot the
RMSE during the iterative updates in our method, where RMSE sharply decreases and then converges to a small error.
The results of this experiment verify the effectiveness of the proposed method.

2) Real-world Data
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Three datasets for MTL are employed: Restaurant & Consumer [16], Student performance 2, and Comprehensive
Climate (CCDS). Restaurant & Consumer Dataset contains the rating scores of 138 consumers to different restaurants
in 3 aspects, leading to 138 × 3 regression tasks. Student performance Dataset contains student grades in 3 periods
and other attributes like sex, and age, where we build 3 × 2 regression tasks by separating the data according to sex
and grade period. Comprehensive Climate Dataset (CCDS) gives monthly climate records of 17 variables in North
America from 1990 to 2001 [11], where we select 5 locations and construct 5×17 regression tasks. MTL-LSSVM [19]
and two tensor-based methods, i.e., Convex and Nonconvex Multilinear MTL (MLMTL-C and MLMTL-NC) [13], are
compared.

Restaurant & Consumer
Metric RMSE Q2 Correlation CPU Time

MTL-LSSVM 0.65 41.83% 62.54% 0.45
MTL-LSSVM-rbf 0.65 41.90% 62.55% 0.51

MLMTL-C 0.65 40.42 % 61.31% 0.45
MLMTL-NC 0.74 18.61% 56.12% 41.10

tLSSVM-MTL 0.61 45.41% 67.03% 22.86
tLSSVM-MTL-rbf 0.59 49.13% 69.54% 19.36

Student Performance
Metric RMSE Q2 Correlation CPU Time

MTL-LSSVM 2.99 93.55% 44.66% 0.03
MTL-LSSVM-rbf 2.49 95.56% 67.49% 0.04

MLMTL-C 3.11 93.03% 36.45% 3.21
MLMTL-NC 3.34 91.96% 21.51% 19.10

tLSSVM-MTL 2.99 93.54% 45.79% 0.72
tLSSVM-MTL-rbf 2.44 95.73% 68.59% 0.41

CCDS
Metric RMSE Q2 Correlation CPU Time

MTL-LSSVM 0.79 29.71% 55.50% 1.08
MTL-LSSVM-rbf 0.70 46.70% 68.36% 1.50

MLMTL-C 0.76 34.56% 58.79% 5.31
MLMTL-NC 0.83 24.04% 50.02% 29.44

tLSSVM-MTL 0.78 32.64% 58.03% 24.07
tLSSVM-MTL-rbf 0.65 54.50% 74.49% 22.01

Table 1: Performance comparison on real-world datasets.

Table 1 presents the prediction results by MTL-LSSVM, MLMTL-C, MLMTL-NC, and the proposed tLSSVM-MTL
with both linear and RBF kernels, where the best results are in bold. The results show that our proposed method
substantially improves the prediction accuracy in terms of all considered metrics. Our advantages appear more promi-
nent for Restaurant & Consumer and CCDS datasets with RBF kernels, particularly on Q2 and Correlation metrics
which achieve significant improvements. In fact, these two datasets contain larger numbers of tasks, i.e., T = 414 and
T = 35, and the used multiple indices are endowed with specific meanings in prior to their real-world applications,
thereby enabling our model to well learn the underlying structural information.

In Table 1, we also compare the CPU time. We can see that the existing matrix-based MTL-LSSVM and MLMTL-C
run faster, due to their convexity benefiting a simple optimization. When comparing with the nonconvex tensor-
based MLMTL-NC, our method is more efficient, particularly for the Student Performance dataset, still showing
the promising potentials of our tensorized model and the designed iterative updates. Nevertheless, more efficient
computations can be expected with further investigations.

5 Conclusion
In this paper, we proposed a novel method for MTL regression, which can be regarded as a tensorized generalization
and also a multimodal extension of multitask LSSVMs. The proposed method considers multitasks with different
indices in the constructed coefficient tensor, which is factorized with low CP rank into a common factor and task-
specific factors. In the proposed method, both multilinear and nonlinearity can be flexibly modelled either through
feature mappings or kernel functions. In optimization, an alternating strategy is derived to update these factors by
solving linear programming subproblems with Lagrangian duality. Experimental results on simulated and real-world
data show our great potentials over the compared relevant methods. In future, different tensorization techniques and
faster computations are promising to be extended to wider ranges of tasks.

2https://archive.ics.uci.edu/ml/datasets/Student+Performance
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