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ABSTRACT

Cross-lingual self-supervised learning has been a growing
research topic in the last few years. However, current works
only explored the use of audio signals to create representa-
tions. In this work, we study cross-lingual self-supervised
visual representation learning. We use the recently-proposed
Raw Audio-Visual Speech Encoders (RAVEn) framework
to pre-train an audio-visual model with unlabelled multilin-
gual data, and then fine-tune the visual model on labelled
transcriptions. Our experiments show that: (1) multi-lingual
models with more data outperform monolingual ones, but,
when keeping the amount of data fixed, monolingual models
tend to reach better performance; (2) multi-lingual outper-
forms English-only pre-training; (3) using languages which
are more similar yields better results; and (4) fine-tuning on
unseen languages is competitive to using the target language
in the pre-training set. We hope our study inspires future
research on non-English-only speech representation learning.

Index Terms— audio-visual speech recognition, self-
supervised learning, cross-lingual learning, visual speech
representations

1. INTRODUCTION

Cross-lingual learning uses data from different languages to
create more robust and accurate models. Relevant supervised
approaches [1–4] have delivered promising results, showing
that increasingly larger models and training sets substantially
improve performance. However, training such powerful mod-
els requires large amounts of labelled data, which can be time-
consuming and expensive to acquire, hindering scalability.

Recently, several self-supervised learning approaches
have been proposed which leverage large amounts of un-
labelled data to learn better representations [5–11] and then
fine-tune on the downstream tasks such as speech recognition,
object detection, etc. Semi-supervised works which focus on
various accents or dialects have also been released [12, 13].
Some self-supervised approaches have also been proposed for
learning visual speech representations, achieving promising
results [14–16]. However, these works tend to use English-
only data both for pre-training and fine-tuning, and it is not
clear how they perform when non-English labelled or unla-
belled data is used. A couple of self-supervised works [17,

18] learn cross-lingual speech representations, but focus on
improving the recognition of acoustic speech using multilin-
gual models and do not compare monolingual models of the
target language with the same pre-training dataset size. To
the best of our knowledge, there is no existing work focusing
on learning cross-lingual visual speech representations.

In this work, we aim to leverage a self-supervised method
to learn visual representations for multiple languages. We use
the RAVEn framework [16], where visual and audio encoders
are pre-trained on unlabelled data via cross- and within-modal
losses. The pre-trained visual backbone is then fine-tuned for
the recognition of visual speech.

We make the following findings: (1) Pre-training on mul-
tiple languages leads to a lower character error rate (CER)
compared to monolingual pre-training when more data is
used, but to a higher CER when keeping the number of
pre-training hours fixed; (2) multi-lingual pre-training out-
performs English-only pre-training with the same number of
data hours, showing that dataset size is not solely responsi-
ble for the improvement and that the information from other
languages likely plays a significant role; (3) pre-training and
fine-tuning on similar languages achieves better performance
compared to less similar ones, signifying that the choice in
languages is important; (4) fine-tuning on languages unseen
during pre-training reaches competitive results compared to
when including the language in the pre-training set.

2. DATASETS

We use four large-scale publicly-available audio-visual datasets
for our study. For pre-training, we use the multilingual
AVSpeech dataset [19], while for fine-tuning we use LRS3 [20]
for English (en), Multilingual TEDx [21] for Spanish (es),
Italian (it), Portuguese (pt) and French (fr), and Chinese
Mandarin Lip Reading (CMLR) [22] for Mandarin (zh).

LRS3 contains 438.9 hours of audio-video-text clips,
with 408 hours of them in the pre-training set, 30 hours
in the training-validation set and 0.9 hours in the test set.
AVSpeech 1 comprises approximately 4 700 hours of audio-
visual segments from 290 000 YouTube videos, with around
1 333 hours in English, 337 hours in Portuguese, 204 hours
in Spanish, 117 hours in French, 68 hours in Italian and 65

1The statistics for the amount of hours for each language are calculated
using the VoxLingua107 language classifier [23].
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Fig. 1: Pre-training and fine-tuning pipelines. We use
RAVEn [16] to pre-train models using audio and video from
multiple languages. Stop-gradient and Exponential Moving
Average are denoted by sg and EMA, respectively. We then
initialise the visual-only encoder using the weights from the
pre-training stage and fine-tune the entire network using the
language-specific dataset. Frames blurred for anonymity.

hours in Mandarin. Multilingual TEDx 2 contains 189 hours
in Spanish, 189 hours in French, 164 hours in Portuguese and
107 hours in Italian, and the 86-hour CMLR dataset consists
of 60.5 hours in the training set, 8.5 hours in the validation
set and 17 hours in the test set.

3. METHOD

3.1. Pre-training

We use the audio-visual self-supervised RAVEn [16] method
for our study, as shown in Fig. 1. It consists of two pairs of
student-teacher models, one for video and one for audio. The
students intake masked inputs and predict targets generated
by momentum-based teachers [7], which are given unmasked
inputs. The video encoder consists of a ResNet-18 [24] with
a 3D stem [25], followed by a Transformer encoder [26] with
attention dimension 512, 8 heads, 2048 hidden units, and 12
layers. The audio encoder comprises a 1D ResNet-18 [27],
with the output piped into a Transformer [28] with the same
settings as for the video encoder. The teachers have equiva-
lent architectures to their student counterparts, apart from the

2Videos where the targeted speaker is not visible are manually excluded.

students also containing additional 2-block Transformer pre-
dictors with attention dimension 512, 8 heads and 2048 linear
units, which use mask tokens corresponding to the masked
input. The predictors prevent representation collapse [7].

The audio student predicts both the video and audio tar-
gets, while the video student predicts the audio targets only.
The loss between the predictions and targets is the cosine sim-
ilarity. The students are optimised with a usual gradient-based
method using the following loss:

L = sim(pas , sg(evt )) + sim(pvs , sg(eat )) + sim(pas , sg(eat )),
(1)

where sim is the cosine similarity function, sg the stop-
gradient, pas and pvs the student predictions, and eat and evt
the teacher encodings for audio and video respectively. The
teacher models are updated using an exponential moving
average (EMA) of the student weights using the following
equation:

ξm ← τξm + (1− τ)θm, (2)

for momentum parameter τ , modality m ∈ {v, a}, student
weights θ and teacher weights ξ, with τ starting at 0.999 and
following a cosine schedule to 1.

3.2. Fine-tuning

Following [16], we fine-tune the pre-trained visual student
encoder to perform visual speech recognition by attaching
a linear layer and a Transformer decoder with attention di-
mension 256, 4 heads, 6 layers and 2048 linear units. We
apply a joint CTC / attention loss [29]. The beam size and
CTC weight are fixed to 40 and 0.1 respectively, as in [30].
For labels, we use a character set for Mandarin and subword
units [31] of vocabulary size 1000 for all other languages.

4. EXPERIMENTS

4.1. Pre-processing

Dataset pre-processing follows [4]. A 96×96 bounding box
is then used to crop a region around the speaker’s mouth.
Videos are then converted to grayscale and standardised by
subtracting the mean and dividing with the standard devia-
tion of the dataset. For audio the raw input is used without
pre-processing or normalization. Utterances spanning longer
than 24 seconds are split into smaller clips.

4.2. Data augmentation

During training, we randomly crop the input video to a size
of 88×88 and perform horizontal flipping with probability
0.5 [4]. The transformations are applied throughout the tem-
poral dimension of the clip consistently. No augmentations
are performed for the audio.



4.3. Masking

Our masking strategy in pre-training follows [16]: we per-
form random sampling on the video frames with probabil-
ity 0.2 to select any as the start mask index, from where we
zero out the next three frames. We apply a similar mask to
the audio clip with a scaling factor of 640 to account for the
sampling size difference compared to video.

4.4. Training settings

We pre-train for 150 epochs with a peak learning rate of 3e-3,
a linear warm-up for the first 40 epochs, and a cosine decay
for the remaining epochs. The optimiser used is AdamW [32]
with β1 = 0.9, β2 = 0.999 and weight decay 0.04.

We fine-tune for 50 epochs, with a 20-epoch warm-up and
a cosine learning rate decay. We use a learning rate of 1e-3
for the encoder with layer-wise decay with parameter 0.5 [33],
and a learning rate of 5e-3 for the decoder. The optimiser is
AdamW with β1 = 0.9, β2 = 0.98 and weight decay 0.1.

4.5. Fine-tuning

We fine-tune on a single language at a time. A subset of
LRS3 (“trainval” partition) with a total of 30 hours is used to
fine-tune in English. Multilingual TEDx is used to fine-tune
in Spanish (62 h), French (72 h), Portuguese (73 h) and Ital-
ian (40 h). CMLR is used to fine-tune in Mandarin (60.5 h).
We measure performance using Character Error Rate (CER)
instead of Word Error Rate (WER), since Mandarin charac-
ters are not separated by spaces and to maintain consistency
with the other languages.

5. RESULTS

5.1. Multilingual pre-training surpasses monolingual

We pre-train (1) six monolingual models with either English,
French, Italian, Spanish, Portuguese, or Mandarin (“Mono-
lingual”); (2) one multilingual model with all six languages
combined (“Multilingual”); and (3) one with all languages
combined but with the same number of hours as for the
English-only dataset (“Multilingual RE”), since AVSpeech
contains more English-speaking videos than other languages3.
Table 1 shows that for every language except English, mul-
tilingual pre-training significantly outperforms monolingual.
We hypothesise that the extra data helps lower-resource lan-
guages by enabling the model to learn structures of speech
shared across different languages. For English, which con-
tains plenty of pre-training data, adding more languages may
cause the representations to become less English-specific, in
turn harming downstream performance.

3We combine all languages except English and then randomly add En-
glish samples until we reach 1 333 hours for the Reduced English (RE)
model. This results in 542 hours of English and 791 hours of other languages.

Table 1: Character Error Rate (CER) of visual-only mod-
els for different languages. We pre-train models on either
one language or six, and fine-tune on each language indepen-
dently. English-only refers to the English monolingual model.

Model Languages
en it pt fr es zh

Pre-Trained Data
(Hours) 1 333 68 337 117 204 65

Fine-Tuned Data
(Hours) 30 40 73 72 62 60.5

English-Only 28.5 39.0 41.6 44.8 35.9 16.2

Monolingual 28.5 76.9 43.5 71.9 47.2 22.6

Multilingual 31.5 38.0 40.0 43.6 35.3 15.8

Multilingual RE 32.8 35.1 38.7 43.3 32.8 15.9

Multilingual MH 32.8 75.7 48.3 73.3 49.6 24.4

5.2. Multilingual pre-training surpasses English-only
pre-training with the same number of hours

Seeing that multilingual models perform better when pre-
trained with more data (Section 5.1), we investigate whether
simply adding more data explains the improvement. We
trained a monolingual “English-only” model and a “Mul-
tilingual RE” model both with 1333 hours, as explained
in section 5.1. We fine-tune both models on all languages
independently, and see that the “English-only” model out-
performs the other monolingual models, signifying that the
number of training hours does matter. However the “Mul-
tilingual RE” model outperforms the English-only model
in every language except English, as seen in Table 1. This
shows that the addition of more data in itself does not fully
explain the performance boost: the information from various
languages gives a further reduction in the error even when
using the same dataset size.

5.3. Monolingual pre-training surpasses multilingual
with same hours

We now compare multilingual and monolingual models,
keeping the number of training hours constant, to disentan-
gle the effects of extra data from the language variety (see
Table 1). We train six multilingual models (“Multilingual
MH”) (Matched Hours), each with equal parts of every lan-
guage to add up to the same number of hours used for the
monolingual model. For every language except Italian, the
monolingual model surpasses the multilingual one. We also
consider a low-resource scenario, in which we randomly
sample 30 hours of each language and train six new monolin-
gual models, as well as a multilingual one with 30 hours of
data in total, sampling 5 hours from each language. Table 2
shows that for every language in this context, monolingual
outperforms multilingual pre-training.



Table 2: CER on low-resource languages. We pre-train six
monolingual models with 30 hours of data randomly sam-
pled from each language, and one multilingual model with
the same hours of pre-training data by sampling 5 hours from
each language randomly. We compare the results in the case
where the languages are low-resource.

Model Languages
en it pt fr es zh

Pre-Trained Data
(Hours) 30 30 30 30 30 30

Fine-Tuned Data
(Hours) 30 40 73 72 62 60.5

Monolingual 79.8 79.1 75.1 75.7 82.6 97.4

Multilingual 84.4 82.4 77.8 77.5 90.0 99.7

Table 3: CER comparison when fine-tuning Spanish, pre-
training on Spanish with added languages. We pre-train
models on three different pairs of languages without the use
of any labelled data, and then fine-tune the visual model using
a total of 62 hours of labelled video clips in Spanish.

Model Pre-Trained Data
(Hours) es

Spanish 204 47.2

Spanish + Mandarin 204 + 65 = 269 43.6

Spanish + French 204 + 65 = 269 42.7

Spanish + Portuguese 204 + 65 = 269 40.5

This leads us to conclude that having sufficient hours of
training data in the target language is important and directly
substituting with equivalent data hours from other languages
will worsen performance. Nonetheless, assuming that the
amount of data from the target language is held constant,
adding additional data from other languages improves repre-
sentation learning, as discussed in Section 5.1.

5.4. Related language pre-training performs better

We hypothesise that, keeping the number of hours fixed,
pre-training on languages more related to the target language
will lead to better results than pre-training on dissimilar
languages. To test this hypothesis, we pre-train three dif-
ferent models: Spanish (204 h) combined with either Por-
tuguese (65 h), French (65 h)4 or Mandarin (65 h), and fine-
tune on Spanish, as shown in Table 3. By adding Mandarin
for pre-training, we observe an absolute reduction of 3.6 %
in CER. By replacing Mandarin data with French, a further
improvement of 0.9 % can be observed. The CER is further
reduced to 40.5 % with an absolute reduction of 2.2 % when

4We randomly sample the Portuguese and French datasets until we reach
65 hours.

Table 4: CER on unseen languages. We pre-train two mul-
tilingual models one excluding Portuguese and one Spanish,
using the same number of pre-training hours as the Multilin-
gual RE model we are comparing to.

Model pt es

Fine-Tuned Data (Hours) 73 62

Multilingual RE 38.7 32.8

Multilingual - Unseen (pt) 41.5 -

Multilingual - Unseen (es) - 34.0

using Portuguese instead. This is likely due to the fact that
Portuguese is the most similar language to Spanish, which
benefits the learning of visual speech representations for the
language.

5.5. Representations on unseen languages

To investigate how well the learned visual speech represen-
tations perform on unseen languages, we train two multilin-
gual models with all languages except either Spanish or Por-
tuguese, totalling 1 333 hours of pre-training data 5, the same
as the “Multilingual RE” model. We fine-tune on the unseen
language, Portuguese and Spanish respectively. Results are
shown in Table 4. For comparison purposes, we use ”Mul-
tilingual RE” model as our baseline. We show that the per-
formance is competitive to the model for which the language
was included in the data.

6. CONCLUSION

In this work, we investigated the impact of multilingual
pre-training on visual speech recognition using a recently
proposed self-supervised framework. We show that, on av-
erage, multilingual pre-training surpasses monolingual when
pre-trained with more data by 23.8% and 25.0% in relative
terms when comparing “Monolingual” with the “Multilin-
gual” and “Multilingual RE” models respectively. However,
it performs on average worse by 6.6% CER compared to the
“Multilingual MH”, i.e., when fixing the dataset size. We also
show that although using more pre-training data yields better
results, training on a variety of languages results in a further
improvement, yielding on average a relative CER decrease
of 2.6% (comparing the “English-only” to the “Multilingual
RE” model). Furthermore, our experiments suggest that the
similarity of languages when pre-training and fine-tuning is
important, and that pre-training multilingual models yield
competitive performance even when fine-tuning on unseen
languages, with a relative performance decrease of 5.4% on
average (comparing the “Multilingual RE” model to “Multi-
lingual - Unseen”).

5We add English data to reach 1 333 hours when removing each language.
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