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ABSTRACT

Transformer has shown advanced performance in speech sep-
aration, benefiting from its ability to capture global features.
However, capturing local features and channel information
of audio sequences in speech separation is equally important.
In this paper, we present a novel approach named Intra-SE-
Conformer and Inter-Transformer (ISCIT) for speech sepa-
ration. Specifically, we design a new network SE-Conformer
that can model audio sequences in multiple dimensions and
scales, and apply it to the dual-path speech separation frame-
work. Furthermore, we propose Multi-Block Feature Aggre-
gation to improve the separation effect by selectively utilizing
information from the intermediate blocks of the separation
network. Meanwhile, we propose a speaker similarity dis-
criminative loss to optimize the speech separation model
to address the problem of poor performance when speakers
have similar voices. Experimental results on the bench-
mark datasets WSJ0-2mix and WHAM! show that ISCIT can
achieve state-of-the-art results.

Index Terms— Speech separation, feature aggregation,
discriminative learning

1. INTRODUCTION

Speech separation is a fundamental task in speech signal pro-
cessing, aiming to separate sounds mixed by multiple speak-
ers. This study focuses on single-channel speech separation.
In previous work, RNN [1, 2], Transformer [3] and the com-
bination of both [4, 5] are used to model speech sequences.
However, the inherent sequential characteristic of RNN is
not conducive to the parallelization of computation, result-
ing in low computational efficiency. Transformer is suitable
for modeling the global structure of sequences. However,
it performs worse than CNN in capturing local information
of sequences because CNN can utilize local receptive fields,
shared weights, and temporal sub-sampling.

The audio signal has different levels of context informa-
tion, such as phonemes, syllables, or words of different gran-
ularities. Therefore, we assume that capturing both global
and local features of audio sequences is crucial in speech sep-
aration. Furthermore, in the time-domain method, the chan-

nel (also called feature map) information of the audio signal’s
feature representation corresponds to the frequency informa-
tion in the time-frequency domain [6, 7], which is crucial
for speech separation. The reason is that audio signals’ low
and high frequency information have different importance for
speech separation [8]. Therefore, capturing the channel in-
formation of the audio feature sequence in the separation net-
work is also indispensable.

To achieve these goals, we present SE-Conformer, which
combines the strengths of CNN and Transformer, using
Conformer [9] enhanced by Squeeze-and-Excitation (SE)
block [10] to model audio sequences. Conformer puts a con-
volution module after the multi-head self-attention to improve
the model’s ability to capture local features in the temporal
dimension, which has been widely used in speech recogni-
tion [9], speech enhancement [11, 12], and continuous speech
separation [13]. SE block can capture the inter-dependency
between channels. This method for simulating channel at-
tention has shown its superiority in capturing channel infor-
mation of speech sequences [14]. Overall, SE-Conformer
can capture local and global information in the temporal
dimension and information in the channel dimension.

Previous studies have shown that features learned from in-
termediate blocks in the separation network can be employed
to enhance the final separation [2, 15]. Inspired by this, we
employ Multi-Block Feature Aggregation (MBFA) to selec-
tively exploit the supplementary information in intermediate
blocks by computing the exponentially weighted moving av-
erage (EWMA) of the outputs of all blocks.

Furthermore, current speech separation methods do not
perform well in separating mixtures of speakers with simi-
lar voices. The reason is that the separation network cannot
identify the characteristics of each speaker well in this case.
Therefore, we use the idea of discriminative learning [16, 17,
18] to increase the similarity between the estimated and clean
sources of the same speaker while decreasing the similarity
between the estimated sources of different speakers. Speak-
ers with similar voices can be efficiently distinguished and
separated by optimizing the separation network using the pro-
posed loss function.

The contributions of this paper are as follows: (i) We
propose a speech separation network composed of SE-
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Fig. 1: The structure of ISCIT. E and D are the encoder and
decoder. Inside the grey box are P Intra-SE-Conformer and
Inter-Transformer blocks. ⊗ is element-wise multiplication.

Conformer and Transformer, which can effectively model
speech sequences in multiple dimensions and scales. (ii)
We propose Multi-Block Feature Aggregation to improve
speech separation by selectively exploiting information from
intermediate blocks. (iii) We propose speaker similarity dis-
criminative loss that can effectively train models to separate
mixtures of speakers with similar voices. (iv) Experimental
results show that the proposed method achieves state-of-the-
art results.

2. METHODOLOGY

2.1. Overall pipeline

The overall pipeline of ISCIT follows the time-domain dual-
path framework [1], as shown in Fig. 1. The encoder and
decoder consist of a 1-D convolutional layer with N filters
and a 1-D transposed convolutional layer with a symmetric
structure. The encoder converts the mixture into the feature
representation ze ∈ RN×T of length T . ze is divided into
overlapping chunks z ∈ RN×K×S with 50% overlap fac-
tor in the temporal dimension, where the size and number of
chunks are K and S. z is fed into P Intra-SE-Conformer
and Inter-Transformer blocks consisting of m SE-Conformer
layers and n Transformer layers. SE-Conformer and Trans-
former are employed to process intra-chunk and inter-chunk
sequences. The Multi-Block Feature Aggregation (MBFA)
module merges the outputs of P blocks. The output is then
transformed back to the original sequence by the overlap-add
method [1]. A gated convolutional layer with the ReLU ac-
tivation function is employed to predict the mask. Finally,
the decoder converts the masked feature representation into a
waveform signal. The following sections describe each com-
ponent in detail.

2.2. Intra-SE-Conformer and Inter-Transformer

SE-Conformer. As shown in Fig. 2, SE-Conformer employs
a pair of half-step feed-forward layers (FFN) [9] sandwich-

FFN MHSA Conv SEA & N  A & N A & N FFN A & N

Fig. 2: The structure of SE-Conformer. A & N is Add &
Norm.

ing a multi-head self-attention module (MHSA), a convolu-
tion module (Conv) and an SE block with residual connec-
tions. The kernel size of the convolution module of each
SE-Conformer block is set to increase successively to extract
local information at different scales. The multi-head atten-
tion module, convolution module, and SE block are used to
capture the global and local information in the temporal di-
mension and the information in the channel dimension. These
three modules are complementary, and their combination can
effectively extract information at multiple dimensions and
scales in speech sequences.

SE block. Assuming v is the input of the SE block, the
output of the SE block is

SE(v) = σ(W2f(W1vavg))⊗ v (1)

W1 and W2 are the weights of two linear layers. f is the
activation function ReLU. σ is the sigmoid function. ⊗ is
element-wise multiplication. SE block first compresses the
input v by applying global average pooling on the frame-level
dimension to get vavg. The pooling operation can mask the
temporal information, allowing the network to efficiently ex-
tract the channel information [10]. Then two linear layers are
applied to recalculate the weights of each channel. The out-
put is mapped to (0, 1) through the sigmoid function as the
weight of each channel of v. These weights strengthen the
features of important channels and weaken the non-important
through channel-wise multiplication with v.

The elements in intra-chunk sequences are continuous to
original audio sequences, so both local and global information
of intra-chunk sequences are important. As mentioned earlier,
SE-Conformer can capture local and global information in the
temporal dimension and channel information of sequences, so
we use SE-Conformer to build intra-chunk sequences. Since
the elements in inter-chunk sequences are non-continuous to
original audio sequences, capturing the global dependency
of sequences is more important. Therefore, multiple Trans-
former layers are stacked to model inter-chunk sequences.

2.3. Multi-Block Feature Aggregation

Feature aggregation is performed to utilize the information
in the intermediate blocks of the separation network to im-
prove performance. After the input passes through P Intra-
SE-Conformer and Inter-Transformer blocks, P feature rep-
resentations can be obtained. Since the feature representation
of later blocks in the network is more helpful for separation,
we use the exponentially weighted moving average to set the



weight of each block to increase sequentially.

Rj = β × Yj + (1− β)×Rj−1, j = 1, . . . , P (2)

where Rj is the aggregated feature representation of the first
j blocks and Yj is the output feature representation of the jth
block. β is the weight decay coefficient.

2.4. Training objective

The model is trained by maximizing the SI-SNR [19]. Fur-
thermore, a speaker similarity discriminative loss is also used
during training. The basic idea is to increase the voice simi-
larity of the same speaker and decrease the voice similarity of
different speakers. Specifically, a pre-trained speaker recog-
nition network is used to calculate the speaker embeddings
of the clean and estimated sources. The cosine similarity of
the speaker embeddings is regarded as the degree of speaker
similarity. Without loss of generality, taking the case of two
speakers as an example, the sum of the following three dot
products is calculated as the loss function:

Lspk = −〈s1, ŝ1〉 − 〈s2, ŝ2〉+ 〈ŝ1, ŝ2〉 (3)

where s1, ŝ1, s2 and ŝ2 denote clean and estimated source of
the two speakers. 〈·, ·〉 denotes dot product operation, which
measures the similarity between different speaker embed-
dings. The first two dot products represent the similarity of
the clean and estimated source of the two speakers. The third
dot product represents the similarity of the estimated source
of the two speakers. The network is optimized by minimizing
this discriminative loss function. The total loss function is
LSI-SNR + αLspk, where α is a coefficient that balances the
weights between these two loss functions.

3. EXPERIMENTS

3.1. Experimental setup

Methods are trained and evaluated on the WSJ0-2mix [16]
and WHAM! [20] datasets. WHAM! is a noise version of
WSJ0-2mix derived from two-speaker mixtures from WSJ0-
2mix plus actual ambient noise samples. SI-SNRi and SDRi
are reported as objective measures of speech separation.

We implement two models with different numbers of pa-
rameters. The model with fewer parameters stacks 4 lay-
ers of SE-Conformer and 6 layers of Transformer in each
Intra-SE-Conformer and Inter-Transformer block denoted as
ISCIT, i.e., m = 4, n = 6. The model with more parame-
ters stacks 8 layers of SE-Conformer and Transformer in each
Intra-SE-Conformer and Inter-Transformer block denoted as
ISCIT (large), i.e., m = n = 8. By default, we experi-
ment with the model with fewer parameters to reduce com-
putational complexity.

The kernel size, stride, and the number of filters N of the
convolutional layer in the encoder and decoder are set to 16,

8, and 256. The chunk size K is set to 250. P is set to 3.
In ISCIT, the kernel sizes in the convolutional layers of SE-
Conformer are set to 13, 15, 17, and 19. In ISCIT (large),
the kernel sizes are set to 13, 15, 17, 19, 21, 23, 25, and 27.
The number of heads in the multi-head self-attention is set to
8. The weight decay coefficient β is set to 0.6. An improved
time-delay neural network (TDNN) [14] trained on the Vox-
Celeb2 corpus [21] which contains more than 6000 speakers
is used as the speaker embedding extraction network. The co-
efficient α of Lspk is set to 1. Adam optimizer with an initial
learning rate of 1.5e−4 is used to train the model. After 50
epochs, the learning rate will be halved if the loss of the val-
idation set does not decrease over three consecutive epochs.
Dynamic mixing (DM) [22] is used as data augmentation.

Table 1: SI-SNR improvement (dB) on WSJ0-2mix when
permuting SE-Conformer (S) and Transformer (T) in intra-
block (Intra) and inter-block (Inter).

Method Intra-S Intra-T

Inter-S 19.3 18.5
Inter-T 21.6 20.3

3.2. Results and discussion

The effect of different permutations. Different permuta-
tions of SE-Conformer and Transformer are used as intra-
chunk and inter-chunk models to verify the effectiveness of
the proposed structure. The results are shown in Table 1. The
permutation we used is shown to have the best performance.
Using SE-Conformer to model both intra-chunk and inter-
chunk sequences shows worse results. The reason may be that
more attention needs to be paid to global information than lo-
cal information when modeling downsampled inter-chunk se-
quences. A good result is also achieved using Transformer
to model intra-chunk and inter-chunk sequences because the
dual-path architecture can partially capture audio sequences’
global and local dependencies.

Table 2: Ablation analysis of ISCIT on WSJ0-2mix dataset
and performance improvement of the proposed method on
Sepformer.

Method SI-SNRi SDRi

ISCIT 21.6 21.7
w/o SE block 21.3 21.4
w/o MBFA 21.0 21.1
w/o Lspk 21.2 21.3

Sepformer [3] 20.4 20.5
w/ MBFA 20.9 21.0
w/ Lspk 20.8 20.9

Ablation experiments. Ablation experiments are per-



formed on the SE block, MBFA, and speaker discriminative
loss to elucidate the contribution of each component. The
results on the WSJ0-2mix dataset are shown in Table 2. It
can be seen that all components contribute to improving the
performance of the proposed method. The performance im-
provement resulting from using MBFA and speaker loss in
Sepformer validates the generality of the proposed method.

Table 3: Results of different feature fusion strategies on the
WSJ0-2mix dataset.

Fusion strategy SI-SNRi SDRi

MBFA 21.6 21.7
Summation 21.4 21.5
Concatenation 21.3 21.4

Comparison of different feature fusion strategies. We
also compare MBFA with two other feature fusion strategies:
simple summation and concatenation, as shown in Table 3.
The results show that the exponentially weighted moving av-
erage can more selectively fuse the output feature representa-
tions of multiple blocks, resulting in better performance than
the other two strategies.

Table 4: SI-SNR improvement (dB) for different speaker gen-
der combinations on the WSJ0-2mix dataset. FF, MM, FM,
and AVG represent female-female, male-male, female-male,
and average.

Method FF MM FM AVG

ISCIT 19.6 20.9 22.0 21.6
w/o Lspk 19.2 20.5 21.8 21.2

Conv-TasNet [6] 13.2 14.7 15.7 15.3
w/ Lspk 13.7 15.5 16.1 16.5

DPRNN [1] 17.9 18.5 19.2 18.8
w/ Lspk 18.4 19.2 19.7 19.3

Results on different gender combinations. We sepa-
rately conduct experiments on the mixture of speakers with
different gender combinations to understand how speaker dis-
criminative loss contributes to speech separation models. The
results on the WSJ0-2mix dataset are shown in Table 4. It can
be seen that speaker discriminative loss improves the mixing
of same-sex speakers more obviously for all speech separa-
tion models. This indicates that the speaker loss can effec-
tively deal with the situation where the speakers have similar
voices by reducing the similarity of the speaker embeddings.
This loss function does not contribute much in the FM case
since the similarity of embedding vectors between speakers
of different genders is already very low. Meanwhile, the per-
formance improvements on multiple models demonstrate the
generality of the proposed speaker loss again.

Comparison with other baseline models. Our method is

Table 5: Model size, SI-SNR and SDR improvements (dB)
on the WSJ0-2Mix dataset.

Method # Params SI-SNRi SDRi

Sandglasset [5] 2.3M 20.8 21.0
Wavesplit [22] 29M 21.0 21.2
Wavesplit + DM [22] 29M 22.2 22.3
Sepformer [3] 26M 20.4 20.5
Sepformer + DM [3] 26M 22.3 22.4
TFPSNet [23] 2.7M 21.1 21.3
SFSRNet [24] 59M 22.0 22.1
SFSRNet + DM [24] 59M 24.0 24.1

ISCIT 34.2M 21.6 21.7
ISCIT + DM 34.2M 23.4 23.5
ISCIT (large) 58.4M 22.4 22.5
ISCIT (large) + DM 58.4M 24.3 24.4

compared with other well-performing methods in model size
and performance on the WSJ0-2mix dataset to verify the ef-
fectiveness reasonably. The results are reported in Table 5.
It can be seen that the proposed method ISCIT (large) + DM
outperforms all baseline methods. Our method ISCIT (large)
+ DM also achieves state-of-the-art results when the mixture
contains noise, as reported in Table 6, which validates the
generality and robustness of our method.

Table 6: SI-SNR and SDR improvements (dB) on the
WHAM! dataset.

Method SI-SNRi SDRi

Wavesplit [22] 15.4 15.8
Wavesplit + DM [22] 16.0 16.5
Sepformer [3] 15.5 15.8
Sepformer + DM [3] 16.4 16.7

ISCIT 16.0 16.4
ISCIT + DM 16.6 17.0
ISCIT (large) 16.4 16.8
ISCIT (large) + DM 16.9 17.2

4. CONCLUSION

In this paper, we propose SE-Conformer for multi-dimensional
and multi-scale modeling of audio sequences. Meanwhile,
Multi-Block Feature Aggregation is applied to selectively ex-
ploit the information of intermediate blocks in the separation
network. We also propose speaker similarity discriminative
loss to effectively train speech separation networks to separate
speakers with similar voices. The experimental results verify
the effectiveness of our method. In addition, the proposed
Multi-Block Feature Aggregation and speaker similarity dis-
criminative loss are general and can also be used to enhance
other speech separation methods.
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