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ABSTRACT

During conversations, humans are capable of inferring the in-
tention of the speaker at any point of the speech to prepare
the following action promptly. Such ability is also the key
for conversational systems to achieve rhythmic and natural
conversation. To perform this, the automatic speech recogni-
tion (ASR) used for transcribing the speech in real-time must
achieve high accuracy without delay. In streaming ASR, high
accuracy is assured by attending to look-ahead frames, which
leads to delay increments. To tackle this trade-off issue, we
propose a multiple latency streaming ASR to achieve high ac-
curacy with zero look-ahead. The proposed system contains
two encoders that operate in parallel, where a primary encoder
generates accurate outputs utilizing look-ahead frames, and
the auxiliary encoder recognizes the look-ahead portion of the
primary encoder without look-ahead. The proposed system is
constructed based on contextual block streaming (CBS) ar-
chitecture, which leverages block processing and has a high
affinity for the multiple latency architecture. Various methods
are also studied for architecting the system, including shifting
the network to perform as different encoders; as well as gen-
erating both encoders’ outputs in one encoding pass.

Index Terms— streaming ASR, zero latency, conversa-
tional system

1. INTRODUCTION

We humans can infer the intention of a speaker in conversa-
tion, even in the middle of an utterance, and prepare the fol-
lowing action to be taken. This function allows us to respond
at the appropriate timing, sometimes without waiting for the
end of an utterance, and to achieve a rhythmic and natural
conversation. To achieve this function in conversational sys-
tems, the speech recognizer of the system is required to tran-
scribe the input speech accurately without delay as any instant
in time. High accuracy can be achieved in speech recogni-
tion by applying look-ahead, which provides the speech rec-
ognizer with more forward clues to make reliable decisions,
but leads to look-ahead latency, which largely increases the
delay of speech recognition. This research aims to develop a
highly accurate speech recognizer that can operate with zero
look-ahead.

One recent trend in speech recognition develops around
the end-to-end models [1–4]. Among them, the recent
Transformer-based methods achieve high performance by
taking advantage of the self-attention function, but also
require look-ahead in their structure [5–10]. Conversa-
tional speech recognition requires streaming ASR, but the
look-ahead requirement also exists to guarantee the perfor-
mance [11–13]. Although it can be implemented in causal
by applying attention-mask to the look-ahead part [14–16],
the degradation from full context implementations that allow
look-ahead is significantly large [17].

In this vein, there are attempts in the multi-latency ap-
proach, which combines a short look-ahead ASR and a long
look-ahead one [18–21]. In [18], a high-latency encoder
(long look-ahead) operates on the outputs of a low-latency
(short look-ahead) encoder to correct the beam search results.
In [20], a second-pass non-streaming recognition is con-
ducted to refine the first-pass streaming outputs. A common
feature of them is the cascaded configuration, in which the
high-latency, high-precision recognizers operate on the re-
sults of the low-latency recognizers to compensate for them.

Similarly, the proposed system in this study is a multi-
latency ASR that combines a high-latency/high-accuracy en-
coder and a low-latency one. However, it is unique in that
the system operates both encoders in parallel and adopts con-
textual block streaming ASR [22, 23] (referred to as CBS),
which has a high affinity with multi-latency architecture, as
the base system. In the proposed method, the decoder oper-
ates primarily with the output of the primary encoder, which
works with the look-ahead. However, the look-ahead portion
of the primary encoder, where there is no output from the pri-
mary encoder, is taken by the auxiliary encoder, which oper-
ates with zero look-ahead. Thus, the whole system constitutes
a recognizer that operates accurately with zero look-ahead.

The CBS proposed by Tsunoo et al., the base system of
our encoder, leverages block processing to achieve stream-
ing properties in the attention-based encoder-decoder model
architecture. CBS contains a contextual block streaming en-
coder [22], which gracefully utilizes contextual information
from the previous block and achieves high recognition accu-
racy. Compared to frame-wise computation, block-wise pro-
cessing in CBS possesses higher efficiency for using both pri-
mary and auxiliary encoders simultaneously. With an easily
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adjustable look-ahead range in the block setting, CBS is also
suitable for realizing parameter sharing of multiple encoders.

Since the original CBS (referred to as CBS-E/D) is based
on the encoder-decoder architecture, the high computational
cost in the decoder limits the real-time performance of CBS.
Hence, in this paper, we also propose Transducer-based CBS
(referred to as CBS-T), which combines the encoder of CBS
and Transducer [24–26] to speed up the whole process, and
also try to construct multi-latency ASR based on it.

The rest of the paper is organized as follows. Section 2 in-
troduces our base models: CBS-E/D and CBS-Transducer. In
Section 3, we describe the proposed multiple latency stream-
ing ASR system and provide various methods for construct-
ing the system. In Section 4, we examine the effectiveness
of the proposed method through speech recognition experi-
ments and analyze the results. Finally, Section 5 concludes
this paper.

2. BACKGROUND

In this study, we adopt both contextual block streaming
encoder-decoder (CBS-E/D) and contextual block stream-
ing Transducer (CBS-T) as our base models.

2.1. Contextual block streaming encoder-decoder

As an attention-based encoder-decoder model, CBS-E/D con-
ducts streaming processing in both encoding and decoding.
As shown in Fig. 1, for streaming encoding, CBS-E/D utilizes
block processing with a context inheritance mechanism [22].
The speech input is segmented into blocks containing history,
target, and look-ahead frames with the numbers of Nl, Nc,
and Nr. When a block is passed on to the encoder, the tar-
get frames are processed for the output with future contexts
provided by the look-ahead frames, as well as history con-
texts provided by history frames and a contextual embedding
vector inherited from the previous block. Streaming decod-
ing is achieved by a block boundary detection (BBD) algo-
rithm [23], which examines the outputs’ index boundaries and
enables the beam search synchronous to the encoded blocks.
The streaming processing in CBS-E/D is calculated as fol-
lows:

Hb, cb = BlockEncoder(Zb, cb−1), (1)

α(y0:i, H1:B) ≈
B∑

b=1

Ib∑
j=Ib−1+1

log p(yi|y0:j−1, H1:b). (2)

Eq. (1) represents the streaming encoding where the b-th in-
put block Zb with |Zb| = Nl + Nc + Nr and a contextual
vector from the previous block cb−1 are processed to out-
put the acoustic feature Hb and current contextual vector cb.
Eq. (2) represents the score of the partial hypothesis y0:i dur-
ing streaming beam search decoding, where y0 is the start-
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Fig. 1: Block processing in CBS encoder

of-sequence token. Ib denotes the index boundary of the b-th
input block derived from the BBD algorithm.

2.2. Contextual block streaming Transducer

A CBS-T model combines the CBS encoder and the Trans-
ducer framework. A Transducer framework contains three
components: acoustic encoder, label encoder, and joint net-
work. Given a streaming input to a current time index t, the
output probability of each token is calculated as follows:

hAE
t = AcousticEncoder(x1:t), (3)

hLE
u−1 = LabelEncoder(y1:u−1), (4)

h = Tanh(Linear(hAE
t ) + Linear(hLE

u−1)), (5)
P (yu|y1:u−1,x1:t) = SoftMax(h), (6)

where the acoustic feature hAE
t extracted from x1:t (Eq. (3))

and the feature hLE
u−1 from the previous output token sequence

y1:u−1 (Eq. (4)) are sent to the joint network, projected to the
same dimension, and added up (Eq. (5)) to calculate the out-
put probabilities against tokens in V based on the previous re-
sult (Eq. (6)). Since the current symbol for each input frame is
predicted based only on the past output tokens, streaming de-
coding is naturally introduced into the Transducer framework
without additional effort.

In CBS-T, we utilize the CBS encoder as the acoustic
encoder of a Transducer model to conduct streaming fea-
ture extraction along with Transducer streaming decoding,
which achieves significant computational complexity reduc-
tion compared to CBS-E/D.

3. PROPOSAL

To achieve high accuracy with zero look-ahead, we propose
a multiple latency streaming ASR system, which leverages
both a primary encoder with high latency to generate accurate
outputs and an auxiliary encoder to recognize the look-ahead
frames attended by the primary encoder with no additional
look-ahead. In this section, we first describe the proposed



system and then provide different methods for architecting
the multiple latency streaming ASR.

3.1. Multiple latency streaming ASR with CBS models

Our proposed system can be constructed with both CBS-E/D
and CBS-T streaming ASR models. For block settings of the
CBS encoder, we fix the size of history frames Nl and target
framesNc as 8 and 4, while the look-ahead range is controlled
by choice of the look-ahead frame number Nr. For instance,
a primary encoder with the block setting of 8-4-4 (Nl = 8,
Nc = 4, and Nr = 8) attends to four look-ahead frames,
which induces a 128 ms delay with a frame rate of 32 ms.
Similarly, an auxiliary encoder with the block setting of 8-4-0
attends to a zero look-ahead frame.

Algorithm 1 demonstrate how the proposed system works,
where the look-ahead frame number in the primary encoder
equals the target frame number in the auxiliary encoder (i.e.,
Nr = N ′c). During recognition, the primary encoder rec-
ognizes the target frames of the input block and outputs se-
quence ypc . Simultaneously, the auxiliary encoder recognizes
the look-ahead frames of the input block and yields yar . yp

c is
then appended to the previous output sequence yP . At the ap-
propriate timing, the auxiliary encoder outputs a special token
〈/s〉, and the speech recognition process is terminated. We
concatenate the previous output sequence yP with the aux-
iliary encoder output yar as the final result. Otherwise, the
streaming ASR moves on to the next input block.

Since the target frame of the auxiliary encoder N ′c is fixed
as four, the assumption of Nr = N ′c constraints the look-
ahead range of the primary encoder and limits the accuracy
of the streaming ASR. Therefore, we extend the two-encoder
system in Algorithm 1 with multiple auxiliary encoders, as
shown in the upper part of Fig. 2. Here the primary encoder
attends to eight look-ahead frames, which are recognized by
two auxiliary encoders with four and zero look-ahead frames,
respectively. With a more extensive look-ahead range (256
ms), the streaming ASR achieves higher recognition accuracy
while maintaining the operation with zero look-ahead.

Algorithm 1 Multi-latency streaming ASR

1: T p
B = Nl +Nc +Nr . primary encoder block setting

2: T a
B = N ′l +N ′c . auxiliary encoder block setting

3: yP ← ∅
4: for t = T p

B to T by T p
B do

5: ypc = PrimaryEncoder(X[t− T p
B , t])

6: yar = AuxiliaryEncoder(X[t− T a
B , t])

7: yP ← ypc . extend target frame results
8: if 〈/s〉 in yar then . appropriate timing for ending
9: break

10: y = yP + yar . final result
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Fig. 2: Structure of proposed system (case of Nr = 2×Nc).
Data inputs of History, Target, and Look-ahead frames
are indicated by arrows pointing at symbols H, T, and
A, respectively. In method A, primary encoder and
auxiliary encoders share same structure.

3.2. Implementation methods

The proposed multiple latency streaming ASR contains a pri-
mary encoder with look-ahead frames and an auxiliary en-
coder recognizing the look-ahead frames that operate in paral-
lel. The primary encoder is implemented following the same
structure as the encoder in existing CBS models. The auxil-
iary encoder shares parameters with the primary encoder but
operates without attending to any look-ahead frames. In this
study, we propose two different methods to architect the pro-
posed system, which are illustrated in Fig. 2.

Method A (Parallel model). In Method A, the system
contains Nr/Nc auxiliary encoders in parallel, each of which
shares exactly the same structure and parameters as the pri-
mary encoder. The i-th auxiliary-encoder uses the input of the
primary encoder shifted forward by i×Nc frames. This means
the look-ahead frames for the i-th encoder are shortened by
i × Nc frames. In the training phase, the primary encoder
and all the auxiliary encoders are simultaneously trained by
masking the last Nc, 2×Nc, · · · , (Nr/Nc)×Nc look-ahead
frames with a certain probability. This is expected to correctly
encode the target part while enabling recognition of the look-
ahead part without delay.

Method B (Unified model). In Method B, we utilize
a single network to recognize both target frames and look-



ahead frames in one encoding pass. With the block setting of
Nl-Nc-Nr , the model is trained to recognize Nc only as well
as recognizeNc andNr together. During inference, the model
recognizes both Nc and Nr in one encoding pass, where the
results for Nc are regarded as the primary encoder outputs,
and the results for Nr are used as the auxiliary encoder out-
puts. Method B significantly reduces the computational cost
during inference. On the other hand, it solves more challeng-
ing problems than method A due to a large number of outputs.
The difficulty increases as the length of Nr is extended.

4. EXPERIMENTS

Speech recognition experiments were conducted on the pro-
posed multiple latency streaming ASR system using ESP-
net2 [27, 28].

4.1. Experimental setup

The models were trained and evaluated using the Wall Street
Journal (WSJ) [29] dataset. We applied SpecAugment [30] to
the input data for robust model training. For the output tokens,
we used SentencePiece [31] to construct an 80 subword vo-
cabulary from the training set with one additional token 〈/s〉.

We conducted experiments with both CBS-E/D and CBS-
T models. The CBS-E/D model consisted of a CBS encoder
with six Conformer [6] layers and decoder with six Trans-
former [5] layers. For CBS-T, we used a CBS encoder with
six Conformer layers for the acoustic encoder and one layer of
long short-term memory (LSTM) network [32] for the label
encoder.

All the models were trained by 150 epochs, and the fi-
nal models were obtained by averaging the snapshots of the
ten epochs with the best accuracy for CBS-E/D and minimal
losses for CBS-T. For decoding, a beam search was conducted
with a beam size of ten for all. We used the averaged word
error rates (WER) on standard validation and test sets (dev93
and eval92) to measure the recognition accuracy.

4.2. Experimental results

The experimental results are summarized in Table 1, where
block settings are shown in the format of Nl-Nc-Nr, and the
processing delay induced by look-ahead frames is recorded in
the column of Delay. Results of the proposals are listed under
mode names Multiple (A) (Parallel model) and Multiple (B)
(Unified model). Baseline models are represented by mode
name Single, serving as upper-bounds (w/ look-ahead) and
lower-bounds (w/ look-ahead).

Comparing the results of CBS-E/D and CBS-T, we can
see that CBS-T showed inferior lower-bound results but
outperformed CBS-E/D when look-ahead frames were ap-
plied. Considering reducing decoding time, CBS-T showed
higher suitability for our proposal. Extending the primary

Table 1: Word error rates on WSJ dataset.

Delay WER
Model Mode Block Setting [ms] [%] (↓)

CBS-E/D

Single 8-4-0 0 15.8

Single 8-4-4 128 14.3
Multiple (A) 8-4-4, 8-4-0 0 14.8
Multiple (B) 8-4-4, 12-4-0 0 14.8

Single 8-4-8 256 13.9
Multiple (A) 8-4-8, 8-4-4, 8-4-0 0 14.3
Multiple (B) 8-4-8, 12-8-0 0 14.2

CBS-T

Single 8-4-0 0 16.4

Single 8-4-4 128 14.4
Multiple (A) 8-4-4, 8-4-0 0 14.5
Multiple (B) 8-4-4, 12-4-0 0 14.6

Single 8-4-8 256 13.7
Multiple (A) 8-4-8, 8-4-4, 8-4-0 0 13.7
Multiple (B) 8-4-8, 12-8-0 0 14.1

encoder block setting from 8-4-4 to 8-4-8 vastly improved
the performance of the streaming ASR. With the setting of
8-4-8, CBS-T achieved a WER of 13.7%, which is very close
to the non-streaming result with the same model structure
(12.8%, not shown in the table). Regarding the different ar-
chitectures of the proposal, methods A and B presented the
same level of performance in most cases, while for CBS-T,
method A showed better accuracy with an extensive look-
ahead range applied. Hence, for implementing the proposed
system, method A is more suitable when accuracy is more
critical, while method B should be adopted when the compu-
tational cost comes first. Overall, with the proposed multiple
latency system, we managed to maintain high recognition
accuracy while operating with zero look-ahead. Compared
to the upper-bound result, zero performance degradation was
achieved when applying method A to CBS-T with eight look-
ahead frames.

5. CONCLUSION

In this study, we proposed a multiple latency streaming ASR
system based on the CBS models to operate encoders with
various latency in parallel. Various implementation meth-
ods were studied for constructing the system. Experimental
results have shown our proposal’s effectiveness in maintain-
ing high recognition accuracy with zero look-ahead. Our fu-
ture work will focus on the trade-off between computational
cost and recognition accuracy. We are also planning to incor-
porate the proposed model into the EoU (end-of-utterance)-
detection-free turn-taking model [33] to realize a rhythmic
conversation system.
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