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ABSTRACT

Normalizing flow models using invertible neural networks
(INN) have been widely investigated for successful genera-
tive image super-resolution (SR) by learning the transforma-
tion between the normal distribution of latent variable z and
the conditional distribution of high-resolution (HR) images
gave a low-resolution (LR) input. Recently, image rescaling
models like IRN utilize the bidirectional nature of INN to
push the performance limit of image upscaling by optimiz-
ing the downscaling and upscaling steps jointly. While the
random sampling of latent variable z is useful in generating
diverse photo-realistic images, it is not desirable for image
rescaling when accurate restoration of the HR image is more
important. Hence, in places of random sampling of z, we
propose auxiliary encoding modules to further push the limit
of image rescaling performance. Two options to store the en-
coded latent variables in downscaled LR images, both readily
supported in existing image file format, are proposed. One is
saved as the alpha-channel, the other is saved as meta-data in
the image header, and the corresponding modules are denoted
as suffixes -A and -M respectively. Optimal network architec-
tural changes are investigated for both options to demonstrate
their effectiveness in raising the rescaling performance limit
on different baseline models including IRN and DLV-IRN.

Index Terms— Super-Resolution, Image Rescaling

1. INTRODUCTION

Currently, ultra-high resolution (HR) images are often needed
to be reduced from their original resolutions to lower ones due
to various limitations like display or transmission. Once re-
sized, there could be subsequent needs of scaling them up so
it is useful to restore more high-frequency details [1]. While
deep learning super-resolution (SR) models [2, 3, 4] are pow-
erful tools to reconstruct HR images from low-resolution
(LR) inputs, they are often limited to pre-defined image
downscaling methods. Additionally, due to memory and
speed constraints, HR images or videos are also commonly
resized to lower resolution for downstream computer vi-
sion tasks like image classification and video understanding.

∗Both authors contributed equally to this work when Chenzhong Yin in-
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Similarly, they rely on conventional resizing methods which
are subject to information loss and have negative impact on
downstream tasks [5]. Hence, learned image downscaling
techniques with minimum loss in high-frequency informa-
tion are quite indispensable for both scenarios. Lastly, it
is known that SR models optimized for upscaling only are
subject to model stability issues when multiple downscaling-
to-upscaling cycles are applied [6] so it further validates the
necessity of learning downscaling and upscaling jointly.

To overcome these challenges and utilize the relationship
between upscaling and downscaling steps, recent works de-
signed the encoder-decoder framework to unite these two in-
dependent tasks together. Kim et al. [7] utilized autoencoder
(AE) architecture, where the encoder is the downscaling net-
work and the decoder is the upscaling network, to find the
optimal LR result that maximizes the restoration performance
of the HR image. Sun et al. [8] designed a learned content
adaptive image downscaling model in which an SR model
is trained simultaneously to best recover the HR images.
Later on, Li et al. [9] proposed a learning approach for im-
age compact-resolution using a convolutional neural network
(CNN-CR) where the image SR problem is formulated to
jointly minimize the reconstruction loss and the regulariza-
tion loss. Although the above models can efficiently improve
the quality of HR images recovered from corresponding LR
images, these works only optimize downscaling and SR sepa-
rately, while ignoring the potential mutual intension between
downscaling and inverse upscaling.

More recently, a jointly optimized rescaling model was
proposed by Xiao et al. [10] to achieve significantly improved
performance. An Invertible Rescaling Net (IRN) was de-
signed to model the reciprocal nature of the downscaling and
upscaling processes. For downscaling, IRN was trained to
convert HR input to visually-pleasing LR output and a la-
tent variable z. As z is trained to follow an input-agnostic
Gaussian distribution, the HR image can be accurately recon-
structed during the inverse up-scaling procedure although z is
randomly sampled from a normal distribution. Nevertheless,
the model’s performance can be further improved if the high-
frequency information remaining in z is efficiently stored.

To resolve the above difficulties and take full potential of
the IRN, here we propose two approaches, namely the IRN-
meta (IRN-M) and IRN-alpha (IRN-A), respectively, to ef-
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Fig. 1: Illustration of invertible image rescaling network architecture: (a) RGBA approach and (b) metadata approach.

ficiently compress the high frequency information stored in
z, which can be used to recover z and help restore HR im-
age consequently during the inverse up-scaling. For IRN-A,
we train the model to extract a fourth LR channel in addi-
tion to the LR RGB channels. It represents essential high fre-
quency information which was lost in the IRN baseline due
to random sampling of z, and is saved as the alpha-channel
of saved LR output. For IRN-M approach, an AE module is
trained to compress z as a compact latent variable, which can
be saved as metadata of the LR output. In the inverse upscal-
ing process, z is restored from the latent space by utilizing
the well-trained decoder. Both modules are also successfully
applied to the state-of-the-art (SOTA) rescaling model DLV-
IRN [11]. In summary, the main contribution of this paper is
that we are the first to compress the high-frequency informa-
tion in z, which is not fully utilized in current invertible image
rescaling models, to improve the restored HR image quality
in upscaling progress.

2. PROPOSED METHOD

2.1. IRN-A

Fig. 1 (a) shows the IRN-A network architectures, where the
invertible neural network blocks (InvBlocks) are referenced
from previous work IRN [10]. In the new model, the input HR

image is resized via Haar transformation before splitting to a
lower branch xl and a higher branch xh. More specifically,
Haar transformation converts the input HR image (C,H,W )
into a matrix of shape (4C,H/2,W/2), where C, H , and
W represent image color channels, height and width respec-
tively. The first C channels represent low-frequency com-
ponents of the input image in general and the remaining 3C
channels represent the high-frequency information on verti-
cal, horizontal and diagonal directions respectively. Different
from the IRN baseline, which uses only the C low-frequency
channels in the lower branch, we add 1 additional channel, de-
noted as alpha-channel for convenience as it would be stored
as the alpha-channel in RGBA format, in the lower branch
xl to store the compressed high-frequency information. After
the first Haar transformation, the alpha-channel is initialized
with the average value across all 3C high-frequency channels,
and only 3C−1 channels are included in xh as the first chan-
nel is removed to make the total number of channels remain
constant.

After channel splitting, xl and xh are fed into cascaded
InvBlocks and transformed to an LR RGBA image y and an
auxiliary latent variable z. First three channels of y consist of
the visual RGB channels and the fourth channel contains the
compressed high-frequency components transformed along
the InvBlocks. The alpha-channel was normalized via a



sigmoid function, S(α) = 1
1+e−α , to help quantization of

the alpha-channel and maintain training stability.
For the inverse upscaling process, the model needs to re-

cover z, denoted as ẑ as it is not stored. In previous work,
ẑ was randomly drawn from normal Gaussian distribution.
While this helps creating diverse samples in generative mod-
els, it is not optimal for tasks like image rescaling which aims
to restore one HR image instead of diverse variations. There-
fore, we set ẑ as 0, the mean value of the normal distribu-
tion, for the inverse up-scaling process. This technique was
also validated in previous works like FGRN [12] and DLV-
IRN [11]. Of note, at the end of inverse process, the deleted
high frequency channel needs to be recovered as

xm = 3C × xα −
∑3C−1

i=1
xih (1)

where xm represents the channel removed from xh and xα
represents the alpha-channel in xl.

2.2. IRN-M

Besides storing the compressed high-frequency information
in a separate alpha-channel, we also propose an alternative
space-saving approach to store the extracted information as
metadata of the image file. Image metadata is text information
pertaining to an image file that is embedded into the image file
or contained in a separate file in a digital asset management
system. Metadata is readily supported by existing image for-
mat so this proposed method could be easily integrated with
current solutions.

The network architecture of our metadata approach is
shown in Fig. 1 (b). Here xl and xh, same as the IRN base-
line, are split from Haar transformed 4C channels to C and
3C channels respectively. Unlike the RGBA approach, the
metadata method uses an encoder at the end to compress the
z and save the latent vector S as metadata, rather than saving
as the alpha-channel of the output. S will be decompressed
by the decoder for the inverse upscaling step. In our AE
architecture, the encoder compacts the number of z chan-
nels from 3C × n2 − C to 4 via 2D convolution layers and
compresses the z’s height and width from (H/2n,W/2n) to
(H/2n+2,W/2n+2) by using max-pooling layers. Here n is
1 or 2 depending on the scale factor of 2× or 4×. Of note, the
AE was pre-trained with MSE loss before being embedded
into the model structure.

After placing the well-trained AE in the IRN architec-
ture, the entire structure was trained to minimize the follow-
ing mixture loss function:

L = λ1Lr + λ2Lg + λ3Ld + λ4Lmse (2)

where Lr is the L1 loss for reconstructing HR image; Lg is
the L2 loss for the generated LR image; Ld is the distribution
matching loss; and Lmse is the MSE loss between the input
of the encoder and the output of the decoder.

Table 1: Comparison of 4× upscaling results using differ-
ent IRN-A hyperparameters and settings. The best results are
highlighted in red.

IRN-A αavg
BSD100 Urban100 DIV2K

PSNR/SSIM↑ PSNR/SSIM↑ PSNR/SSIM↑
Post-split 7 32.66 / 0.9083 32.50 / 0.9328 36.19 / 0.9464

Pre-split
7 33.02 / 0.9132 32.17 / 0.9186 36.60 / 0.9495
3 33.12 / 0.9150 33.10 / 0.9384 36.67 / 0.9504

Table 2: Comparison of 4× upscaling results using different
IRN-M hyperparameters and settings. The best results are
highlighted in red.

IRN-M AEp AEf
BSD100 Urban100 DIV2K

PSNR/SSIM↑ PSNR/SSIM↑ PSNR/SSIM↑

2layers
7 7 31.41 / 0.8771 30.79 / 0.9074 34.79 / 0.9283
3 3 31.58 / 0.8793 31.30 / 0.9123 35.06 / 0.9306
3 7 31.65 / 0.8804 31.34 / 0.9154 35.09 / 0.9306

4layers 7 7 28.15 / 0.7765 25.82 / 0.7989 30.72 / 0.8591
3 7 31.69 / 0.8812 31.44 / 0.9143 35.15 / 0.9314

3. EXPERIMENTS

Following the same training strategy and hyperparameters in
IRN baseline, our models were trained on the DIV2K [13]
dataset, which includes 800 HR training images. IRN-M
and IRN-A were trained with 500,000 and 250,000 itera-
tions respectively. Both models were evaluated across five
benchmark datasets: Set5 [14], Set14 [15], BSD100 [16], Ur-
ban100 [17] and the validation set of DIV2K. The upscaled
images quality across different models were assessed via the
peak noise-signal ratio (PSNR) and SSIM on the Y channel of
the YCbCr color space. Following previous works [12, 11],
as it is not beneficial to add randomness in restoring HR im-
ages, we set ẑ as 0 during the inverse up-scaling process for
both training and validation steps in all experiments.

3.1. Ablation study

As the transformed alpha-channel is the key innovation for
improved performance for IRN-A, the pre-splitting and ini-
tial settings of the alpha-channel before the forward trans-
formation process are very important. For better analysis
of their effects, Table 1 shows an ablation study that com-
pares the results for different settings of the alpha-channel,
where “post-split” and “pre-split” refer to splitting the alpha-
channel after the downscaling module or before the InvBlock
respectively, and αavg represents presetting the average value
of high-frequency information in the pre-split alpha-channel.
From Table 1, we notice that using the αavg with pre-split
architecture performs best across all options.

The IRN-M model constructs the HR image by decoding
the latent space s saved in the metadata file. Table 2 shows an-
other ablation study for determining the optimal AE structure,
whereAEp represents that AE, before training as part of IRN-
M, is pre-trained using MSE loss with standalone random z;



HR Image Bicubic CAR [8] IRN [10] DLV-IRN [11] DLV-IRN-M DLV-IRN-A GT

Fig. 2: Visual examples from Urban100 test set (Best viewed in online version with zoom-in).

Table 3: Quantitative results of upscaled ×4 images of 5 datasets across different bidirectional rescaling approaches. The best
two results highlighted in red and blue respectively.

Method Scale
Set5 [14] Set14 [15] BSD100 [16] Urban100 [17] DIV2K [18]

PSNR/SSIM↑ PSNR/SSIM↑ PSNR/SSIM↑ PSNR/SSIM↑ PSNR/SSIM↑
CAR [8] 2 38.94 / 0.9658 35.61 / 0.9404 33.83 / 0.9262 35.24 / 0.9572 38.26 / 0.9599
IRN [10] 2 43.99 / 0.9871 40.79 / 0.9778 41.32 / 0.9876 39.92 / 0.9865 44.32 / 0.9908
FGRN [12] 2 44.15 / 0.9902 42.28 / 0.9840 41.87 / 0.9887 41.71 / 0.9904 45.08 / 0.9917
DLV-IRN [11] 2 45.42 / 0.9910 42.16 / 0.9839 42.91 / 0.9916 41.29 / 0.9904 45.58 / 0.9934
DLV-IRN-M 2 45.83 / 0.9916 42.47 / 0.9850 43.38 / 0.9925 41.77 / 0.9911 45.91 / 0.9939
DLV-IRN-A 2 47.81 / 0.9937 44.96 / 0.9884 47.15 / 0.9967 45.07 / 0.9953 48.94 / 0.9968
CAR [8] 4 33.88 / 0.9174 30.31 / 0.8382 29.15 / 0.8001 29.28 / 0.8711 32.82 / 0.8837
IRN [10] 4 36.19 / 0.9451 32.67 / 0.9015 31.64 / 0.8826 31.41 / 0.9157 35.07 / 0.9318
HCFlow [19] 4 36.29 / 0.9468 33.02 / 0.9065 31.74 / 0.8864 31.62 / 0.9206 35.23 / 0.9346
FGRN [12] 4 36.97 / 0.9505 33.77 / 0.9168 31.83 / 0.8907 31.91 / 0.9253 35.15 / 0.9322
DLV-IRN [11] 4 36.62 / 0.9484 33.26 / 0.9093 32.05 / 0.8893 32.26/ 0.9253 35.55/ 0.9363
DLV-IRN-M 4 36.67 / 0.9490 33.33 / 0.9105 32.12 / 0.8909 32.33 / 0.9264 35.63 / 0.9373
DLV-IRN-A 4 37.56 / 0.9566 34.12 / 0.9246 33.12 / 0.9150 33.10 / 0.9384 36.67 / 0.9504

AEf represents fixing the AE during training the IRN-M; and
“2layers” and “4layers” represent two and four convolutional
layers used in AE respectively. As shown in Table 2, using
the IRN-M with pre-trained 4 layers AE and not fixing the
AE during training has the best performance. Of all three
settings, pre-training of AE is the most critical factor in max-
imizing performance.

3.2. Image rescaling

The quantitative comparison results for HR image reconstruc-
tion are shown in Table 3. Rather than choosing SR mod-
els which only optimize upscaling steps, we consider SOTA
bidirectional (jointly optimizing downscaling and upscaling
steps) models for fair comparison [8, 10, 11, 12, 19]. As
shown in Table 3, DLV-IRN-A is efficient at storing high-
frequency information in the alpha-channel and consequently
outperforms its baseline DLV-IRN, as well as other models,
including HCFlow and IRN models, which randomly sam-
ples ẑ for the upscaling step. For DLV-IRN-M, while not as
good as the -A variant, it still performs better than all other
models, only trailing behind FGRN for two small test sets at

4×. Hence we conclude that both -M and -A modules can
improve the modeling of the high-frequency information and
help restore the HR image consequently. Visual examples of
the 4× test in Fig 2 also validate the improved performance
from our models.

4. CONCLUSIONS
To fully mine the potential of image rescaling models based
on INN, two novel modules are proposed to store otherwise
lost high-frequency information z. The IRN-M model utilizes
an autoencoder to compress z and save as metadata in native
image format so it can be decoded to an approximate of z,
while IRN-A adds an additional channel to store crucial high-
frequency information, which can be quantized and stored as
the alpha-channel, in addition to the RGB channels, in exist-
ing RGBA format. With carefully designed autoencoder and
alpha-channel pre-split, it is shown that both modules can im-
prove the upscaling performance significantly comparing to
the IRN baseline. The proposed modules are also applica-
ble to newer baseline models like DLV-IRN and DLV-IRN-A
is by far the best, which further pushes the limit of image
rescaling performance with a significant margin.
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