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ABSTRACT

Existing deep learning-based hyperspectral image (HSI) clas-

sification works still suffer from the limitation of the fixed-

sized receptive field, leading to difficulties in distinctive

spectral-spatial features for ground objects with various sizes

and arbitrary shapes. Meanwhile, plenty of previous works

ignore asymmetric spectral-spatial dimensions in HSI. To

address the above issues, we propose a multi-stage search

architecture in order to overcome asymmetric spectral-spatial

dimensions and capture significant features. First, the asym-

metric pooling on the spectral-spatial dimension maximally

retains the essential features of HSI. Then, the 3D convolu-

tion with a selectable range of receptive fields overcomes the

constraints of fixed-sized convolution kernels. Finally, we

extend these two searchable operations to different layers of

each stage to build the final architecture. Extensive exper-

iments are conducted on two challenging HSI benchmarks

including Indian Pines and Houston University, and results

demonstrate the effectiveness of the proposed method with

superior performance compared with the related works.

Index Terms— Hyperspectral image classification, neu-

ral architecture search, asymmetric spectral-spatial

1. INTRODUCTION

Hyperspectral image classification is an advanced task within

the field of remote sensing, which categorizes each pixel into

predefined classes by analyzing its spectral and spatial char-

acteristics. This valuable mission is the basis for practical ap-

plications such as vegetation research, fine agriculture, ocean

exploration, and defense and security [1, 2]. HSI data has

the characteristic of spectral-spatial integration, consisting of

hundreds of continuous narrow spectral channels, which pre-

serve a large amount of spectral information. However, the

high-dimensional spectral data also poses a great challenge

to the HSI classification task - the classification accuracy in-

creases first as the dimensions of the input data increase. After
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reaching a certain extreme value, decreases as the dimensions

of the input data increase, which is also known as the Hughes

phenomena [3].

To solve this issue, several traditional feature extraction

methods based on principal component analysis (PCA) [4],

independent component analysis (ICA) [5], and linear dis-

criminant analysis (LDA) [6] are proposed. Additionally, sup-

port vector machines (SVM) [7, 8] are also a popular way to

handle HSI classification. With the continuous development

of deep learning, neural network based methods such as con-

volutional neural networks (CNN) have attracted the interest

of HSI researchers due to their superior performance in solv-

ing computer vision problems [9, 10]. Compared with the

traditional methods, the deep learning-based method can au-

tomatically obtain high-level features of the HSI data through

the training process without feature engineering for classi-

fication feature selection, which enables classification mod-

els to represent the features of datasets better and simultane-

ously improve classification accuracy. Nonetheless, the cur-

rent deep learning-based HSI classification methods still have

some unsolved challenges.

Most existing neural networks are too fixed to handle HSI

classification problems. On the one hand, the ground objects

in the HSI data with various sizes and arbitrary shapes re-

quire variable and flexible receptive fields. Also, asymmetric

spectral-spatial dimensions in HSI need to be regarded se-

riously. On the other hand, the existing HSI datasets have

different physical characteristics, such as spatial resolution,

spectral range, and the number of bands. Expert-designed

neural networks are not well-equipped to handle these dif-

ferences. Neural architecture search (NAS) is a way to auto-

mate the design process of neural network architecture [11],

reducing the required effort and expert knowledge compared

to designing the architecture artificially for each dataset. The

mainstream search strategies of early NAS approaches are

evolutionary algorithm [12] based and reinforcement learn-

ing [11] based approaches, which usually require hundreds of

GPU days or large amount of computational resources to be

consumed. Differentiable Architecture Search (DARTS) [13]

approach is proposed to relax the search space to a continuous

domain so that it can be optimized by gradient descent, effec-

tively reducing the complexity of NAS tasks. In recent years,
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Fig. 1: Overview of the proposed Asymmetric Spectral-Spatial Neural Architecture Search (A2S-NAS). First, regular-sized cubes are cropped

on the HSI dataset and fed into a multi-stage search architecture consisting of three stages. Second, Each stage contains a Basic block and

two A2SConvs, where A2SConv is the proposed novel space to be searched. More specifically, the A2SConv includes an outer search space

and an inner search space. Outer search space is used to determine an asymmetric pooling operation. Inner search space is adopted to decide

the receptive field of 3D convolution. Finally, the output feature of the final stage is fed into a fully connected layer to obtain the classification

result.

some NAS-based HSI classification methods have been pro-

posed [14, 15], but the alternative operations of these methods

are adapted from classical algorithms and are not specifically

designed for HSI data characteristics.

To this end, we propose a novel asymmetric spectral-

spatial NAS algorithm (A2S-NAS) for the HSI classification

task. First, we propose a novel asymmetric spectral-spatial

operator called A2SConv, including an outer search space and

an inner search space. Second, a hierarchical spectral-spatial

search structure is dominated by the proposed A2SConv.

Specifically, outer search space contains searching for the ap-

propriate asymmetric pooling operation and upsampling. The

inner search space is responsible for designing the receptive

field of the 3D convolution, respectively. Finally, we extend

A2SConv to different layers of each stage in the overall net-

work consisting of three stages. The contributions of this

paper are summarized as follows:

1) A2S-NAS is proposed considering the asymmetric

physical resolution in spectral-spatial dimensions of

HSI data. A gradient-based NAS algorithm is used to

search the final network in order that different layers

are able to perform suitable asymmetric pooling in

spectral-spatial dimensions.

2) We further develop a flexible and hierarchical search

that is composed of certain A2SConv blocks. The

joint outer search space and inner search space of

A2SConv allows simultaneous search of asymmetric

spectral-spatial feature pooling and feature extraction

that contains multiple receptive fields for objects with

various shapes and sizes.

3) The proposed A2S-NAS has been verified on two chal-

lenging HSI benchmarks including Indian Pines and

Houston University through extensive experiments,

outperforming the related works with superior perfor-

mance.

2. METHOD

The flowchart of the proposed A2S-NAS is shown in Fig. 1.

First, we randomly cut regular-sized (19× 19× Band, which

is set based on the experimental results) cubes on the HSI

dataset and send these cubes into a multi-stage search ar-

chitecture, which consists of three stages. In detail, Stage

1 contains a Basicblock and two A2SConv blocks. Stage

2 and Stage 3 both contain a Downsample block and two

A2SConv blocks where A2SConv is the designed novel space

to be searched. Second, A2SConv modules that have an outer

search space and an inner search space are used to conduct

hierarchical spectral-spatial search. Finally, the feature map

produced by the last layer of the search part is fed into a pre-

defined classifier composed of a linear layer to obtain the final

classification result.

2.1. Asymmetric Spectral-Spatial Convolution

As illustrated in Fig. 1, the outer search space of A2SConv

(pink zone in Fig. 1) searches for an asymmetric pooling

operation. The inner search space of A2SConv (gray zone in



Fig. 1) searches for a proper receptive field of 3D convolution

for the final HSI classification network.

Outer Search Settings. The outer search space includes

asymmetric pooling and upsampling operation, aiming to

reduce the high computational cost of processing high-

dimensional HSI images while ensuring no loss of spectral

and spatial features. In this work, we provide three different

operations: no pooling, spectral pooling utilizing average

pooling with stride (2,1,1), and spatial pooling utilizing av-

erage pooling with stride (1,2,2), respectively. In contrast to

traditional methods, we are searching for the corresponding

pooling method (i.e., pooling dimension) for each layer of the

network, rather than simply pooling on a fixed dimension or

the whole dimension, which is proved to play an important

role in HSI classification network.

Inner Search Settings. The physical characteristics of the

HSI dataset introduced above inspire us that networks with

multi-receptive fields can extract features of ground objects

with various sizes and shapes. To this end, the proposed inner

search space consists of 3D convolutions with multi-receptive

fields. In this work, we provide four different operations de-

pending on the kernel size and dilatation rate, including 3D

convolution with kernel size 3 or 5 and dilatation rate, which

are chosen from 1 and 2, equal to normal convolution and

dilated convolution.

2.2. Multi-Stage Search Strategy

In contrast to the gradient-based 3D-ANAS [16], the basic

block of our search space is the proposed A2SConv itself,

rather than a directed acyclic cell. In addition, we adopt

a gradient-based search strategy with Beta-Decay regular-

ization loss, which is an improving DARTS-based method

without extra changes or cost [17]. The A2SConv block for

searching contains all candidate operations mentioned above,

each of which has a corresponding learnable parameter αk.

When placing all layers of the three stages together, the output

of the i-th A2SConv block to be searched is defined as

O(x)
(i)

=

|O|∑

k=1

F (α
(i)
k
)Ok(x)

F (α
(i)
k
) =

exp(α
(i)
k
)

∑|O|

k
′=1

exp(α
(i)

k
′ )

(1)

where x is the input of the i-th A2SConv block, O is the can-

didate operation set, F (α
(i)
k
) denotes the softmax activation

of the corresponding learnable parameter α
(i)
k

and O(x)
(i)

is

the mixed output of the i-th A2SConv block.

Note that architecture parameters between different lay-

ers are not shared in our search strategy. Therefore, the task

of differentiable architecture search is to learn a set of ar-

chitecture parameters α for each A2SConv block that makes

the search process achieve optimal performance. During the

search process, the architecture parameters α can be opti-

mized by the gradient descent algorithm. After the search,

a compact network is obtained by keeping only the opera-

tors corresponding to the largest activated parameter in each

block. In this way, neural architecture search has evolved into

the optimization process of a set of continuous variables.

The architecture parameters α and network weights ω are

jointly optimized following bi-level optimization objective on

the training and validation sets according to Eq. (2),

min
α

Lval(ω
∗(α), α) + λLBeta

s.t. ω∗(α) = argmin
ω

Ltrain(ω, α)

LBeta = log(

|O|∑

k=1

eαk) = smoothmax({α})

(2)

where λ = 1 denotes the weight of beta decay regularization

loss proposed in [17]. Based on the performance of the val-

idation set, the optimal network architecture parameters α∗

is selected. Then the specific operator corresponding to each

block is chosen according to the optimal parameters.

3. EXPERIMENT

3.1. Experimental Setup

We use two challenging HSI benchmarks to evaluate the pro-

posed A2S-NAS, including Indian Pines (IP) and Houston

University (HU) . The IP dataset consists of 16 vegetation

classes with 145 × 145 pixels and 200 hyperspectral bands.

The HU dataset consists of 15 ground object classes with

349× 1905 pixels and 144 hyperspectral bands.

For the IP dataset and the HU dataset, we use 610 and

450 randomly selected samples for the architectural search,

respectively. The SGD optimizer is used to optimize the net-

work architecture parameters. The Adam optimizer and ex-

ponentially decaying learning rate strategy are used for the

optimization of the network parameters.

To compare our searched model with other advanced

models, we randomly select 50 samples in each category as

the training set, 30 as the validation set, and the rest as the

test set on the IP dataset. For the HU dataset, we randomly

select 30 samples in each category as the training set, 30 as

the validation set, and the rest as the test set.

3.2. Experimental Results

We compare the proposed A2S-NAS with the NAS-based ap-

proach 3DAutoCNN [14], SSTN [18] and 3D-ANAS [16],

which were published recently, as well as CNN based meth-

ods, such as 3DCNN [19] and SSRN [20].

The classification results implemented on the IP dataset

based on the six models are listed in Table 1. Fig. 2 shows the

corresponding visualization results. The best results of each

row are highlighted in bold.
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Fig. 2: Comparison of classification results of different models on IP

dataset. (a) False-color map. (b) 3DCNN, OA = 76.83%. (c) SSRN,

OA = 94.51%. (d) 3DAutoCNN, OA = 94.09%. (e) 3D-ANAS,

OA = 95.91%. (f) SSTN, OA = 92.45%. (g) A2S-NAS, OA =

97.17%. (h) Groundtruth.

Fig. 3: Final network for two HSI datasets. (a) on IP dataset. (b) on

HU dataset.

The classification results implemented on the HU dataset

based on the six models are listed in Table 2. The best results

of each row are highlighted in bold.

As can be seen in Tables 1 and 2, our proposed method

A2S-NAS achieves the best classification results under all

three evaluation metrics (OA for Overall Accuracy, AA for

Average Accuracy, and Kappa for Kappa coefficient) among

the six models on two HSI datasets. In particular, the clas-

sification results on class 11 Soybean-mintill and class 12

Soybean-clean of the IP dataset and class 4 Trees and class

9 Road of the HU dataset show a significant improvement of

3.55%, 2.37%, 2.61% and 3.14% , respectively.

3.3. Architecture Analysis

We analyze the search results on two datasets presented in

Fig. 4, focusing on finding the effectiveness of hierarchical

spectral-spatial search for asymmetric pooling methods in

outer search space. First, different layers in the final network

are able to perform 3D convolutions with different receptive

Table 1: Comparison of classification results of different models on

IP dataset.

Class 3DCNN SSRN

3D

Auto

CNN

3D-

ANAS
SSTN

A2S-

NAS

OA(%) 71.65 94.51 94.09 95.91 92.45 97.17

AA(%) 83.28 93.01 96.66 95.35 93.68 97.05

Kappa 67.70 93.66 93.28 95.26 91.29 96.73

1 97.83 100.00 97.83 89.47 97.22 94.44

2 50.00 84.26 89.92 90.96 80.12 92.17

3 53.15 97.95 95.66 93.84 95.48 98.22

4 89.78 100.00 100.00 100.00 100.00 97.81

5 91.64 97.13 97.31 98.69 90.86 94.52

6 93.81 99.52 98.90 99.68 93.49 98.89

7 92.86 68.18 100.00 99.68 100.00 100.00

8 96.56 100.00 100.00 91.67 100.00 100.00

9 85.00 81.25 100.00 100.00 93.75 87.50

10 70.64 97.82 91.67 81.25 89.45 94.27

11 62.12 93.38 90.88 94.84 94.52 98.39

12 66.53 92.29 86.68 94.99 89.45 97.36

13 100.00 100.00 100.00 96.75 100.00 100.00

14 89.53 98.71 98.74 100.00 98.88 100.00

15 93.01 98.95 98.96 99.91 99.65 99.30

16 100.00 78.67 100.00 98.25 76.00 100.00

Table 2: Comparison of classification results of different models on

HU dataset.

Class 3DCNN SSRN

3D

Auto

CNN

3D-

ANAS
SSTN

A2S-

NAS

OA(%) 81.67 90.95 84.45 87.82 89.42 92.20

AA(%) 83.58 92.33 85.22 88.32 90.34 93.30

Kappa 80.19 90.21 83.25 86.83 88.56 91.56

1 95.43 91.78 87.50 87.22 87.14 96.35

2 95.70 95.55 77.91 87.75 89.38 94.48

3 97.55 96.60 92.74 84.26 98.91 96.10

4 96.26 94.10 72.65 81.30 92.86 98.87

5 98.06 98.47 96.14 97.19 99.11 95.34

6 92.11 98.21 84.86 88.81 90.68 97.49

7 70.27 95.41 73.03 80.45 84.89 89.76

8 70.87 77.51 76.64 79.32 84.31 68.93

9 68.47 84.61 71.10 75.45 77.58 87.75

10 58.58 62.17 96.67 95.99 96.48 92.38

11 78.35 96.75 92.31 95.77 99.47 96.75

12 72.53 99.42 91.48 89.86 73.56 88.02

13 68.88 94.41 85.80 94.08 83.39 95.63

14 95.58 100.00 90.65 99.25 99.78 100.00

15 94.99 100.00 88.85 95.71 97.56 99.59

fields, indicating that our method is flexible in terms of fea-

ture extraction. Second, the layers containing asymmetric

pooling operations account for 50% and 83.3% of the two

models, respectively. We believe that this consideration of

asymmetric spectral-spatial feature pooling is promising.

4. CONCLUSION

Most deep learning-based HSI classification methods are too

fixed to cope with the ground objects in the HSI data with

various sizes and arbitrary shapes. In this paper, we propose

the A2S-NAS for HSI classification, taking a more flexible

way of overcoming asymmetric spectral-spatial dimensions

and capturing significant features. Specifically, the proposed

A2SConv helps to construct a joint outer search space and

inner search space, which was experimentally demonstrated

to have superior classification ability. We believe this concern

for asymmetric pooling operations and multi-receptive fields

will have an impact on HSI classification research.
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