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ABSTRACT

Existing self-supervised learning methods based on con-
trastive learning and masked image modeling have demon-
strated impressive performances. However, current masked
image modeling methods are mainly utilized in natural im-
ages, and their applications in medical images are relatively
lacking. Besides, their fixed high masking strategy limits
the upper bound of conditional mutual information, and the
gradient noise is considerable, making less the learned rep-
resentation information. Motivated by these limitations, in
this paper, we propose masked patches selection and adap-
tive masking strategy based self-supervised medical image
segmentation method, named MPS-AMS. We leverage the
masked patches selection strategy to choose masked patches
with lesions to obtain more lesion representation information,
and the adaptive masking strategy is utilized to help learn
more mutual information and improve performance further.
Extensive experiments on three public medical image seg-
mentation datasets (BUSI, Hecktor, and Brats2018) show that
our proposed method greatly outperforms the state-of-the-art
self-supervised baselines.

Index Terms— Self-supervised Learning, Conditional
Entropy, Mutual Information, Medical Image Segmentation.

1. INTRODUCTION

Deep learning has demonstrated remarkable achievements in
medical image analysis [1, 2]. In particular, self-supervised
learning (SSL) has emerged as a crucial technique for med-
ical image segmentation tasks [3, 4], which is mostly based
on contrastive learning. Contrastive learning [5–7] enforces
positive samples closer and negative samples further away
in latent space to learn representation information. However,
these methods only focus on the global semantics of the im-
age and ignore the details of the image and non-subject ar-
eas [8]. To solve these problems, masked image modeling [9–
12] for self-supervised pretraining has come into being and
recently grown in popularity. Masked image modeling (MIM)
aims to reconstruct corresponding discrete visual tokens from

†Corresponding author: zhenghua.xu@hebut.edu.cn (Zhenghua Xu).

masked input, like MAE [9] and SimMIM [10]. MAE lever-
ages an asymmetric encoder and decoder architecture to pre-
dict masked patches from unmasked ones directly. To further
maintain image structure, SimMIM takes visible and masked
patches as input, and it also lightweights decoder to accelerate
pretraining process.

Although MAE and its variants [10–12] have shown
promising results, their strategies for selecting masked patches
and masking ratio are still unsatisfactory. Specifically, they
have not been extensively applied in medical images, where
the lesion area is usually small and may be overlooked, re-
sulting in less lesion representation information and limiting
the performance of downstream tasks. Additionally, a fixed
high masking rate leads to a small learnable conditional mu-
tual information and large gradient noise, which lowers the
upper bound of representation information learned and makes
optimization challenging [13, 14]. Therefore, the need for
masked patches selection and adaptive masking strategy in
medical images is compelling.

In this paper, we innovatively propose Masked Patches
Selection and Adaptive Masking Strategy based self-supervised
medical image segmentation (MPS-AMS). First, we lever-
age the masked patches selection strategy to focus on lesions
to learn more lesion representation information, which is
achieved by choosing the masked patches with a high prob-
ability of containing lesions through covariance matrix and
k-means clustering. Then, we propose an adaptive mask-
ing ratio strategy to improve the upper bound of conditional
mutual information to learn more representation information.

The contributions of this paper are briefly summarized
as follows: (i) We propose a novel masked patches selec-
tion strategy specifically for medical images and an adaptive
masking strategy to overcome the shortcomings of existing
masked image modeling methods. (ii) To enhance the lesion
representation information, we use the masked patches se-
lection strategy to select patches with a higher probability of
containing lesions and the adaptive masking ratio strategy to
reduce gradient noise and improve the upper bound of con-
ditional mutual information. (iii) Extensive experiments on
three public medical image datasets demonstrate that MPS-
AMS outperforms state-of-the-art self-supervised methods,
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Fig. 1. The illustration of our MPS-AMS architecture. Green and purple areas represent lesion and background, respectively.

and the proposed strategies are effective and essential for
improving model performance.

2. METHODOLOGY
Figure 1 illustrates the overall structure of our proposed MPS-
AMS, which comprises two main processing steps. Firstly,
MPS-AMS conducts masked image modeling pretraining us-
ing a large set of unlabeled medical images. The resulting
modules are then utilized in fully supervised downstream seg-
mentation tasks with a small amount of labeled images.

2.1. Masked Patches Selection Strategy
Since current masked image modeling works are mostly fo-
cused on natural images, we first propose masked patches se-
lection strategy special for medical images. We sort all the
patches in the order of lesion first, then background, and then
mask patches in this order. The input image x contains two
parts, x = {xi, x¬i}, where xi indicates visible patches and
x¬i indicates masked patches.

To get the selected xi and x¬i, we define two initialized
cluster centers, which are predicted to represent lesion and
background class respectively. After dividing x into patches,
we construct a covariance matrix after a softmax layer ac-
cording to the degree of similarity between different patches.
Then, we take k-means to divide all patches into two cate-
gories. Considering that most lesions in medical images only
occupy a small overall area, we can suppose the category with
a small number of clusters as lesions. Besides, we choose k-
means because it can achieve good performance with lower
complexity and faster efficiency compared with other cluster-
ing methods like hierarchical, t-SNE, and so on, and the rea-
son why we choose k-means is well discussed in the section
of results.

We evaluate the effectiveness of the proposed masked
patches selection strategy by estimating the conditional en-
tropy to represent the uncertainty of the sampling strategy.
After classifying patches, the uncertainty of xi is reduced,
which indicates an improvement of the lower bound. Con-
cretely, We leverage Hj to indicate the uncertainty of the
sampling strategy. H1 is the lowest bound of uncertainty,

H1 = Ep(xi,x¬i)logP (xi, x¬i). (1)

H2 is used to indicate the uncertainty in the learning process
of neural networks,

H2 = Ep(xi, x¬i)logQ(xi, x¬i). (2)

SupposeH3 is the optimal upper bound with the Monte Carlo
sampling strategy,

H3 = Ep(x̂i, x̂¬i)logP (xi, x¬i). (3)

where x̂i and x̂¬i represent the best sampling results.
The Monte Carlo sampling strategy is shown below, in

the interval [a, b], f(x) represents the size of the value, p(x)
represents the probability of occurrence, the meaning of the
integral result is the output total value.∫ b

a

h(x)dx =

∫ b

a

f(x)p(x)dx = Ep(x)[f(x)] (4)

Because KL(P‖Q) > 0, we can get H2 ≤ H1. Combin-
ing the definitions of conditional entropy described in detail
[15], we can get H3 ≤ H2 ≤ H1, which means that our pro-
posed masked patches selection strategy reduces uncertainty
and can help to learn more lesion representation information.

2.2. Adaptive Masking Strategy
In contrast to the fixed high masking ratio used in MAE and
SimMIM, we propose a novel adaptive masking ratio strategy
that combines following insights. Fine-tuning performance is
limited under high and fixed masking ratios using in MAE.
Furthermore, we note that model’s ability to learn representa-
tion information and conditional mutual information is higher
under larger masking ratios.

Concretely, the initial adaptive ratio σ0 is 25%, which is
set according to MAE and it increases with the training pro-
cess.

σ = σ0 + ln(xe)/τ, (5)

where xe donates the training epoch and τ is a constant.
Combining with masked patches selection strategy, we

can get the numbers of masked patches n and xm, where n =
bN × σc and xm indicates the image with masked patches.
As illustrated in Fig 1, it is achieved by the l2 loss.

L =

n∑
i=1

(ymi − xmi)
2, (6)

where xmi
indicates the i-th masked patch, ymi

indicates the
i-th reconstructed patch.

3. EXPERIMENTS AND RESULTS

3.1. Experimental settings
To evaluate the effectiveness of our proposed MPS-AMS, we
perform extensive experiments on three publicly medical im-



Table 1. Results of the proposed MPS-AMS and baselines on BUSI, Hecktor, and Brats2018 datasets.

Methods BUSI Hecktor Brats2018
DSC PPV Sen DSC PPV Sen DSC PPV Sen

5%

U-Net 0.3863 0.5234 0.4531 0.1762 0.2803 0.1755 0.2059 0.2253 0.2606
SimCLR 0.4172 0.4129 0.3554 0.2201 0.2385 0.3113 0.2908 0.3009 0.4376
BYOL 0.4291 0.6991 0.4311 0.1967 0.2179 0.2555 0.2811 0.2867 0.4545
SwAV 0.4017 0.6128 0.4470 0.2186 0.1909 0.3793 0.2277 0.1884 0.4466
MAE 0.4793 0.6568 0.5463 0.2560 0.2975 0.2966 0.2898 0.3012 0.4596

SimMIM 0.4644 0.6847 0.4951 0.2413 0.2745 0.2972 0.2801 0.3095 0.4297
MPS-AMS 0.5002 0.7034 0.5661 0.2711 0.2975 0.3347 0.2973 0.3035 0.4708

10%

U-Net 0.4876 0.6360 0.5262 0.2541 0.3002 0.2875 0.2529 0.2677 0.3366
SimCLR 0.5396 0.6439 0.5759 0.2947 0.3325 0.3900 0.3551 0.3459 0.4868
BYOL 0.5491 0.7044 0.5761 0.3013 0.3106 0.3930 0.3458 0.3058 0.3535
SwAV 0.5163 0.6325 0.5372 0.2550 0.2669 0.3340 0.2914 0.2562 0.4694
MAE 0.5639 0.6603 0.6104 0.3195 0.3443 0.3794 0.3578 0.3220 0.4878

SimMIM 0.5537 0.6918 0.6262 0.2920 0.3325 0.3511 0.3246 0.3149 0.4725
MPS-AMS 0.5914 0.7305 0.6211 0.3554 0.3681 0.4125 0.3633 0.3163 0.5019

50% U-Net 0.5714 0.6339 0.6058 0.3090 0.3801 0.3160 0.3535 0.3530 0.4139
100% U-Net 0.6821 0.8005 0.6542 0.3927 0.4523 0.4736 0.4294 0.4497 0.5224

Table 2. Results of our ablation studies on three datasets.

Methods BUSI Hecktor Brats2018
DSC PPV Sen DSC PPV Sen DSC PPV Sen

5%

base 0.4584 0.6773 0.4841 0.2370 0.2636 0.3051 0.2757 0.2302 0.4227
base+AMS 0.4629 0.6690 0.4498 0.2479 0.2778 0.3087 0.2790 0.2806 0.3653
base+MPS 0.4732 0.7459 0.4859 0.2521 0.2865 0.2940 0.2801 0.3095 0.4297

base+AMS+MPS 0.5002 0.7034 0.5661 0.2711 0.2975 0.3347 0.2973 0.3035 0.4708

age datasets with supervised learning and state-of-the-art SSL
approaches. The results are shown in Table 1.

3.1.1. Datasets

(i) The BUSI dataset [16] contains ultrasound scans of breast
cancer and consists of 780 images categorized into normal,
benign, and malignant. The average image size is 500 × 500
pixels. (ii) The Hecktor dataset [17,18] contains 25923 slides
with CT and PET modalities for head and neck tumor seg-
mentation. (iii) The BraTS2018 dataset [19–21] was released
for segmenting brain tumors and includes 22963 scans with
four MRI modalities: T1, T1CE, T2, and FLAIR volumes.
Furthermore, we selected CT and T1 modalities for experi-
ments on the Hecktor and Brats2018 datasets as they are chal-
lenging to segment and can demonstrate the effectiveness of
the proposed method on complex datasets.

3.1.2. Implementation details

Our MPS-AMS is implemented based on Torch 1.7.0 and
CUDA-10.1. For pretraining, we employ ADAM [22] opti-
mizer with a learning rate of 0.0002, and the batch size is
32 for BUSI, 48 for Hecktor, and 36 for BraTS2018. We set
τ to 12 to ensure a final masking ratio of nearly 80%. For
transfer learning, we use the U-Net [23] for downstream seg-
mentation task with ADAM optimizer, an initial learning rate
of 0.0002, weight decay of 0.0001, and the learning rate strat-
egy is warmup-cosine-lr. The batch size is set to 32, 31, and
56 for datasets with 5% labeled data, and 32, 90, and 70 for
datasets with 10% labeled data, respectively. All datasets are
randomly divided by 8:1:1. The training epochs are set to 200
for contrastive learning methods, 800 for masked image mod-
eling methods, and 70 for fine-tuning. The experiments are
conducted on 8 GeForce RTX2080 GPUs.

3.1.3. Evaluation
We employ three widely used metrics to evaluate our method,
including positive predictive value (PPV), sensitivity (Sen),
and dice similarity coefficient (DSC). PPV is defined as the
ratio of correctly segmented positive pixels to all pixels classi-
fied as positive in the segmentation result. Sen represents the
ratio of correctly segmented positive pixels to all pixels an-
notated as positive in the ground truth. DSC is the harmonic
mean of PPV and Sen, providing a more comprehensive as-
sessment of model performance.
3.1.4. Baselines
To evaluate the performance of our proposed MPS-AMS, we
choose randomly initialized U-Net without self-supervised
pretraining as the full-supervised baselines, leveraging 5%
and 10% annotations ratio. Besides, several state-of-the-
art self-supervised learning methods are chosen as the self-
supervised learning baselines in our experiments, including
SimCLR [5], BYOL [6], SwAV [7], MAE [9], and Sim-
MIM [10]. We evaluate the quality of the learned representa-
tions by transferring the weight from different self-supervised
learning methods to the medical image segmentation task, and
then we evaluate their downstream performances.

All baselines are implemented and run leveraging similar
procedures and settings as those in their original papers, and
additional parameter adjustments are made to our best efforts.

3.2. Main results
To investigate the effectiveness of MPS-AMS, we conduct
experiments on three datasets and compare the performance
with two state-of-the-art baselines: Fully Supervised Baseline
(i.e., Fully Supervised) and Self-Supervised Baselines (i.e.,



Fig. 2. Visualized segmentation results on the BUSI, Hecktor and BraTS2018 datasets with 10% labeled data.

Table 3. Results of different clustering methods on Brats2018
with 10% labeled data.

methods k-means hierarchical t-SNE DBSCAN

DSC 0.3633 0.3474 0.3716 0.3592
complexity O(n) O(n2) O(n2) O(n2)

SimCLR, MAE). For a fair comparison, we use the same
backbone network (U-Net) with 5% and 10% annotations
across all methods. The experimental results are shown in
Table 1 and the segmentation results are shown in Figure 2.

As shown in Table 1 and Table 2, MPS-AMS generally
outperforms all baselines, which proves it achieves better seg-
mentation performance with limited annotations. Besides,
our proposed strategies are also well demonstrated.

Compare with Fully Supervised Learning from Scratch.
Specifically, MPS-AMS generally outperforms the baseline
model trained from scratch by a large margin with 5% and
10% annotations. Furthermore, when using 10% annotations,
we can generally outperform the fully supervised method
with 50% annotations.

Compare with Self-Supervised Learning Baselines.
Then, we compared our MPS-AMS with state-of-the-art self-
supervised methods on the BUSI, Hecktor, and BraTS2018
datasets with 5% and 10% labeled data. Firstly, we find
that self-supervised methods generally outperformed fully
supervised learning from scratch using partial annotations.
This suggests that, in addition to limited labeled data, self-
supervised methods also learn useful information from a large
amount of unlabeled data. Secondly, when comparing MPS-
AMS with SimCLR, BYOL, SwAV, MAE, and SimMIM,
we observe that MPS-AMS significantly outperformed these
methods on all datasets. Specifically, MPS-AMS achieves
5.18%, 4.23%, 7.51%, 2.75%, and 3.77% higher DSC index
scores than other self-supervised baselines under the 10% an-
notation ratio. This improvement can be attributed to the use
of masked patches selection and adaptive masking strategy in
MPS-AMS, which reduces the uncertainty of masked patches
and improves the upper bound of conditional mutual infor-
mation, thereby learning more comprehensive and fruitful
representation information.

Moreover, we have found that in some cases, the PPV of
our method is not always the best. This may be attributed to
marginal background patches that bear some resemblance to
lesion patches. To address this issue, we plan to explore atten-

Fig. 3. Training schedules on BUSI with 10% labeled data.

tion mechanisms [24, 25] to make model pay more attention
to foreground patches.

Analysis of Visualized Segmentation Results. More-
over, all the aforementioned findings are further supported by
the visual results presented in Figure 2. The results show that
MPS-AMS outperforms all other self-supervised medical im-
age segmentation methods, with segmentation results more
similar to the ground truth. These visual observations pro-
vide further evidence that the effectiveness of our proposed
masked patches selection and adaptive masking strategy.

Analysis of Clustering Methods. We have tried differ-
ent kinds of clustering methods. As shown in Table 3, we
can see that under the situation of Brats2018 with 10% la-
beled data, the result of k-means is only 0.83% different from
the result of the best method t-SNE, but it can bring a sig-
nificant reduction in computational complexity, thereby im-
proving the efficiency of model operations, which indicates k-
means can achieve good performance with lower complexity
and faster efficiency. Considering actual hardware and time
requirements, k-means is the best choice.

Analysis of Training Schedules. We also test the perfor-
mance of different epochs and the results are shown in Fig-
ure 3. The vary trend before convergence is the same as MAE
and it achieves the best when epoch reaches 800 as mentioned
before. When the epoch continues to increase, performance
begins to decline due to an excessive masking ratio.
3.3. Ablation study
To verify the effectiveness of our proposed MPS-AMS, we
conducted further experiments to evaluate the segmentation
performance of three intermediate models: base, base+AMS,
and base+MPS. The base is a masked autoencoder based on
U-Net, which aims to reconstruct masked patches of the input
image and output an image of the same size as input image.
Its masking ratio is 75%. The base+AMS model can be seen
as the base model with an adaptive masking strategy, while
base+MPS is the base model based on the masked patches



selection strategy. We conduct the above ablation studies on
BUSI, Hecktor, and BraTS2018 datasets using 5% ratios of
annotations. The corresponding results are shown in Table 2.

As shown in Table 2, different strategies contribute dif-
ferently to the model performance on segmenting tasks. Con-
cretely, base+AMS outperforms base, indicating that fixed
high masking ratio limits the upper bound of representation
learning capacity and AMS can solve the problem effec-
tively, base+MPS outperforms base, indicating the efficiency
of masked patches selection strategy. Besides, MPS-AMS
achieves the best performance when AMS and MPS are
all utilized. For example, the DSC, PPV, and Sen increase
4.03%, 2.65%, and 6.85% for the BUSI dataset. The results
demonstrate that our proposed strategies are highly effective.

4. CONCLUSION
In this paper, we propose a self-supervised medical image
segmentation method named MPS-AMS, which is based on
masked patches selection and adaptive masking strategy. The
proposed method can not only alleviate the limitations of cur-
rent MIM methods in medical images, but also improve the
upper bound of conditional mutual information, and reduce
gradient noise, thus learning more representation information
and achieving better performance. To evaluate the effective-
ness of our method, we conduct extensive experiments on
three public medical image datasets, and the results demon-
strate that our method is effective in self-supervised medical
image segmentation tasks.

Considering that there is abundant mutual information
in multimodal medical image data and the imbalanced data
problem, it is worth of conducting further investigations to
apply MIM methods in multimodal [26] and imbalanced [27]
medical image analysis tasks to extract more representation
information and enhance the deep models’ performances.
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