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ABSTRACT

Audio-visual speech enhancement (AV-SE) methods utilize auxiliary
visual cues to enhance speakers’ voices. Therefore, technically they
should be able to outperform the audio-only speech enhancement
(SE) methods. However, there are few works in the literature on an
AV-SE system that can work in real time on a CPU. In this paper, we
propose a low-latency real-time audio-visual end-to-end enhance-
ment (AV-E3Net) model based on the recently proposed end-to-end
enhancement network (E3Net). Our main contribution includes two
aspects: 1) We employ a dense connection module to solve the per-
formance degradation caused by the deep model structure. This
module significantly improves the model’s performance on the AV-
SE task. 2) We propose a multi-stage gating-and-summation (GS)
fusion module to merge audio and visual cues. Our results show that
the proposed model provides better perceptual quality and intelligi-
bility than the baseline E3net model with a negligible computational
cost increase.

Index Terms— speech enhancement, audio-visual, real-time,
low-latency, dense connection

1. INTRODUCTION

Video communications have been universally applied for both busi-
ness and personal connections due to the COVID-19 pandemic.
Since numerous people have shifted to online communication, the
request for better perceptual quality and intelligibility of audio has
become increasingly crucial. However, some factors, such as back-
ground noise, reverberation, and interfering (background) speakers,
can degrade the quality of the call. The leakage of interfering speak-
ers can significantly degrade the intelligibility of the main speaker
and potentially cause privacy issues. Unfortunately, unconditional
audio-only speech enhancement models cannot remove interfer-
ing speakers since they are usually trained to preserve all human
speech [1, 2].

Personalized speech enhancement (PSE) models were proposed
to enhance target speakers by adding target speakers’ voice pro-
files [1, 2, 3, 4] for suppressing the interfering speakers and environ-
mental noises. They utilized the speaker embeddings extracted by a
pre-trained speaker encoder on enrollment audios [4]. Alternatively,
video can assist in speech enhancement from different aspects with-
out the need for enrollment. First, the face of the speaker reveals the
speaker’s identity [5]. Second, lip motion is highly correlated with
the phonetic information of the target speech [6].

It is essential to limit the latency and computational complex-
ity of the model to make audio-visual speech enhancement (AV-SE)
models suitable for real-time communication. Although many works
employed causal designs, only a few reported the computational
complexity of their methods [7]. This paper focuses on optimiz-
ing intelligibility and perceptual quality for real-time processing on

the CPU (i.e., the inference time on the CPU is shorter than the au-
dio time with low latency). Specifically, we propose a low-latency
real-time AV-SE system, namely AV-E3Net, based on the recently
proposed end-to-end enhancement network (E3Net) [1]. AV-E3Net
takes pixels of the mouth region of interest (ROI) and the noisy au-
dio signal as inputs and produces the enhanced audio signal. We
employ a dense connection module in AV-E3Net, which helps with
better gradient flow for deeper networks. We propose a novel multi-
stage gating-and-summation (GS) fusion module for merging audio
and video features. We evaluate our proposed models in different
application scenarios. Our results suggest that AV-E3Net yields sig-
nificantly better results for the AV-SE task than the baselines.

2. RELATED WORK

Recently, multiple personalized speech enhancement (PSE) systems
were proposed and proven computationally efficient to work in real
time. Personalized PercepNet [3] utilized the target speaker’s voice
embeddings to improve the speech enhancement capabilities of orig-
inal PercepNet [8]. Thakker et al. [1] proposed a real-time causal
PSE model named end-to-end enhancement network (E3Net). Com-
pared with other bigger PSE models such as pDCCRN [2], E3Net
provided better perceptual and transcription quality with much
smaller computational complexity. PSE models are conditional
models that utilize speaker embeddings, and their success can be
extended to other conditional models, such as AV-SE models.

Traditionally, an AV-SE network comprises four components:
audio encoder, video encoder, enhancement network, and audio de-
coder [9, 10]. The audio/video encoder extracts audio/video features,
and the enhancement network combines two features to produce en-
hanced audio embedding. The audio decoder decodes enhanced au-
dio embedding to recover the audio. The video encoder can be pre-
trained or jointly trained with the other modules. In [9], the video
encoder was trained jointly with the rest of the network, whereas [10]
and [11] employed a pre-trained video encoder. Joint training of the
video encoder with the rest of the network is somewhat challenging
because of the deeper model architecture. However, there are some
techniques to alleviate this problem. ResNet [12] and DenseNet [13]
proposed dense shortcuts to address the training issue caused by the
deep structures. Zhang et al. [14] also proposed a unified perspective
of the dense shortcut in ResNet and DenseNet. Motivated by these
works, this paper employs a dense connection module to tackle the
performance issue caused by the deep architecture of AV-E3Net.

Audio and video fusion is an important research direction for
AV-SE [9, 15, 16] and multimodal learning [17]. The most com-
mon fusion method is concatenation, which is easy to implement,
but one modality often tends to dominate the other [9]. Xu et al. [15]
proposed an attention-based fusion method. However, this method
considerably increased the computational cost. Joze et al. [18], and
Iuzzolino and Koishida [16] proposed a squeeze-excite (SE) fusion
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Fig. 1. Model architecture of proposed AV-E3Net.
⊕

denotes addition and
⊗

denotes Hadamard product. Dense sum A/V denotes the
dense connection variable for audio/video features, which is depicted in subsection 3.1. The dense sum V provides shortcuts across all video
LSTM blocks. The dense sum A provides shortcuts across all audio LSTM blocks as well as all fusion blocks. The fusion block can be either
a concatenation block or a GS block.

that employs a gating module to recalibrate the modality. Addition-
ally, their work integrated slow fusion [19] with the gating module
and proved that slow fusion is more effective. Wang et al.[20] also
employed a gating network to perform a product-based fusion, en-
suring the performance of the model lower-bounded by an audio-
based system. Inspired by [16, 18, 20], we propose a multi-stage
gating-and-summation (GS) module, which integrates slow fusion
and provides a lightweight and efficient approach to fuse audio and
video features.

An essential requirement for AV-SE systems to be adopted in
practical scenarios is to make them work in real time with low com-
putational costs. Unfortunately, only a few existing works focused
on this scenario. Gu et al. [7] proposed a real-time audio-visual
speech separation and provided the real-time factor (RTF) measured
on a GPU as the metric for computational costs. Gogate et al.[21]
also proposed a real-time audio-visual speech enhancement model,
whereas no computational complexity metric was provided. In con-
trast, we propose an AV-SE system that can work in real time on the
CPU by utilizing computationally efficient E3Net as our backbone,
using lightweight ShufflNetV2 as the video encoder, and using only
mouth ROI as the visual input.

3. METHODOLOGY

The overview of AV-E3Net architecture is shown in Figure 1. In this
section, we introduce each module of the proposed model.

3.1. Audio network

The audio network comprises an audio encoder, a masking network,
and an audio decoder. The audio encoder processes the input au-
dio to generate audio features; subsequently, they are fed into the
masking network to produce a mask, which is applied to the au-
dio features. Within the masking network, the audio features are
fused with video features generated by the video encoder. At last,
the audio decoder reconstructs the audio from suppressed audio fea-
tures. We follow the design of E3Net [1]. The audio encoder and
audio decoders are 1D convolution and 1D transposed convolution
layers, respectively. The masking network linearly stacks a ReLU

activation, a layer normalization, a projection block, a fusion mod-
ule, multiple LSTM blocks, and a mask prediction module. Please
refer to [1] for the detailed description of the LSTM block and the
mask prediction. In addition, we employ the dense connection mod-
ule to tackle performance issues caused by a deep model structure.
A dense connection replaces the original skip connection of E3Net
in each LSTM block. The dense connection also exists in the fu-
sion module. Generally, a module with a skip connection can be
expressed as:

Yn = θ(fn(xn) + xn) (1)

where n is the index of the module, θ is a layer normalization, xn is
the input of the module fn, and Yn is the output. As an alternative,
the dense connection is defined as:

Xn = Σn
i=0xi, (2)

Yn = θ(fn(xn) +Xn) (3)

or
Xn = Xn−1 + xn, (4)

Yn = θ(fn(xn) +Xn) (5)

Therefore, Xn is a dense summation variable that is updated from
Xn−1 to Xn through all dense connection blocks. Note that a dense
connection requires each xn to have the same shape. In this way,
the dense connection provides shortcuts across all LSTM blocks and
fusion modules.

3.2. Video encoder

In a recent lipreading study, Ma et al. [22] employed a lightweight
ShuffleNetV2 [23] as the video encoder to extract visual features.
This work verified that ShuffleNetV2 could provide satisfactory per-
formance with much efficient computational complexity in lipread-
ing tasks. Motivated by its success in lipreading, we also employ
ShuffleNetV2, followed by a projection block, as the video encoder.
The projection block changes the dimension of video features. It
comprises a fully connected layer, a PReLU activation, and a layer
normalization. Afterward, we optionally employ video LSTM
blocks to capture the speaker’s lip motions. Video LSTM blocks
share the same structure as those in the audio network.
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Fig. 2. Proposed architecture of GS fusion block.
⊕

denotes addi-
tion and

⊗
denotes Hadamard product. Dense sum A denotes the

dense connection variable for audio features.

3.3. Audio-Visual fusion

Next, we describe our proposed multi-stage gating-and-summation
(GS) fusion module. For the multi-stage fusion, the video LSTM
blocks are forced to be paired with the audio LSTM blocks in the
masking network. The fusion blocks are placed at the beginning of
each pair of LSTM blocks and after the last pair of LSTM blocks, as
shown in Figure 1.

Figure 2 presents the detailed architecture of the GS fusion
block. The block takes audio features Fa,n ∈ Rda and video fea-
tures Fv,n ∈ Rdv from the nth pair of LSTM blocks as inputs. Two
operations are included in this fusion block. First, a gating module
is employed to calculate the importance of channels and recalibrate
the original audio features by the importance,

Gn = σ(g(δ(h([Fa,n;Fv,n])))), (6)

Ha,n = Gn � Fa,n (7)
where [Fa,n;Fv,n] concatenates audio features and video features,
Gn ∈ Rda , σ is the sigmoid activation, h and g are fully connected
layers, and δ is a ReLU activation. Second, a dense summation mod-
ule is defined as,

Xa,n = Xn + Fa,n (8)
Ya,n = θ(proj(Ha,n) +Xa,n) (9)

where proj is a projection block, θ is the layer normalization, Xn is
the dense summation variable from the nth audio LSTM block. Up-
dated by adding Fa,n, the new dense summation variable becomes
Xa,n. [20] observed serious performance degradation of other AV-
SE models [9, 10] in less noisy scenarios. Therefore, they suggested
that AV-SE systems should be mainly audio-based, and video cues
should provide only additional contributions. The design of GS fu-
sion follows this idea: the gating module and the summation module
make fused features closer to the space of audio features. The dense
summation also provides shortcuts across all LSTM blocks and fu-
sion modules and helps with better gradient flow for AV-E3Net.

Note that, due to the mismatch of frame rates for the video and
audio, we up-sample the video frames to match them with the audio
frames by replicating them.

4. EXPERIMENTAL RESULTS

4.1. Training and validation data

This work followed the data simulation pipeline of [2]. We utilized
clean speech samples from AVSpeech [10], VoxCeleb2 [24], and
LRS3 [25] datasets. By filtering the samples according to the Mean
Opinion Score (MOS) of the audio quality, we selected 214, 170, and
30 hours of video samples from these datasets, respectively. Further-
more, we used a face detector for each frame of the video samples,
and if the number of frames with a face detected divided by the to-
tal number of frames was less than 0.95, we discarded that video
sample.

For creating the noisy mixtures, we convolved clean speech
samples with simulated room impulse response (RIR) using the
image method. We employed noise clips from Audioset [26] and
Freesound [27], which were also convolved with RIRs. The clean
speech, noise clips, and RIR files were split exclusively to simulate
train, validation, and test sets. 20% of simulated samples contained
only the target speaker, and 80% of them contained both the target
and interference speakers. In [2], there was a restriction that the
target speaker should be closer to the microphone than the interfer-
ence speaker. However, in this work, we relieved this restriction.
Our system assumes that the target speaker’s face is the only face
captured by the camera. We simulated 20,000 hours of training data
and 10 hours of validation data. The average length of simulated
mixture samples was around 10 seconds. We used the video frames
unaltered along with simulated noisy audio samples. For video
frames where the face detector did not capture the target speaker’s
face, we filled in the video frame input with zero tensors.

4.2. Test sets and evaluation metrics

Test sets followed the same simulation approach as train/validation
sets, in which the source data were mutually exclusive. Only
LRS3 [25] data was used in test sets, and the average length of
simulated mixture samples was 6 seconds. We simulated test sets
for two target scenarios: 1) the mixture comprises the target speaker,
the interference speaker, and noise. 2) the mixture comprises the
target speaker and noise. Following [2], we named these two sce-
narios TS1 and TS2, respectively. TS1 and TS2 included 10 hours
and 1 hour of data, respectively. To measure the perceptual quality
and the intelligibility of processed audio, we utilized word error
rate (WER), perceptual evaluation of speech quality (PESQ), and
Signal-to-distortion ratio (SDR). We also measured the real-time
factor (RTF) on an Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz.
Since the inference speed of the model changed from time to time
on a CPU, we ran the same model 100 times on a 3 seconds input to
reduce the variance of observations.

4.3. Implementation Details

Audio and video samples were re-sampled in 16KHz, 25 fps, and
360p, respectively. We followed video pre-processing of lipread-
ing [22, 28]. Each video frame was processed by 1) face and land-
marks detection, 2) similarity transformation based on landmarks,
and 3) cropping in a size of 50x50 on the mouth ROI. Small sizes for
cropping can further reduce the video encoder’s computational cost,
which contributed most of the computational cost in AV-E3Net. We
used Microsoft’s internal face detection tool for face and landmarks
detection. During training, the noisy mixtures were chunked into 3
seconds of audio batches aligned with 75 video frames. We used the
power-law compressed phase-aware (PLCPA) loss function [29].



Table 1. Computational complexity and model performance results are as shown. RTF was measured on an Intel(R) Xeon(R) W-2133 CPU @
3.60GHz and averaged on 100 runs. The multi-stage fusion is introduced in subsection 3.3. ”single concat” denotes the single concatenation
block which is introduced in 4.4.

Configuration Complexity TS1 TS2
Method Dense connection Fusion Parameters(millions) RTF WER ↓ SDR ↑ PESQ ↑ WER ↓ SDR ↑ PESQ ↑
No Enhancement 24.38 3.26 1.186 14.43 6.53 1.294
AO-E3Net no no 16.03 0.053 26.34 6.70 1.451 17.32 12.05 1.930
AV-DCATTUNET no single concat 10.87 1.580 17.93 10.72 1.946 14.79 12.41 2.158
Naive AV-E3Net no single concat 18.02 0.122 18.11 11.41 1.958 15.51 12.67 2.082

- w/ 1 video LSTM block no single concat 21.17 0.127 18.06 11.38 1.958 15.24 12.70 2.096
- w/ 4 video LSTM blocks no single concat 30.64 0.138 24.86 10.20 1.806 18.58 12.63 2.061

AV-E3Net yes single concat 18.02 0.123 17.01 11.52 1.974 14.76 12.72 2.099
- w/ 1 video LSTM block yes single concat 21.17 0.130 16.95 11.54 2.000 14.87 12.76 2.136
- w/ 4 video LSTM blocks yes single concat 30.64 0.138 16.73 11.57 1.985 14.35 12.73 2.106

AV-E3Net w/ 4 video LSTM blocks yes multi-stage 32.74 0.142 16.64 11.60 2.002 14.19 12.78 2.104
- GS fusion (proposed) yes multi-stage 35.37 0.143 16.62 11.67 2.009 14.02 12.83 2.136

Regarding the audio encoder and decoder, we set window and
hop sizes to 320 (20 ms) and 160 (10 ms), respectively. The theoret-
ical latency of AV-E3Net was 20ms. The number of features used in
the audio encoder was 2048. Within the masking network, the pro-
jection block projected features from R2048 to R512. The number of
audio LSTM blocks was 4. Within the LSTM block, the input and
output dimensions of the fully connected block were 512, and the in-
termediate dimension of the fully connected block was 1024. The in-
put and output dimensions of LSTM were 512. Regarding the video
encoder, we used ShuffleNetV2 0.5x [23] to encode video frames to
1024-dimension features. Then a projection block was employed to
project video features to 512-dimension. Afterward, video LSTM
blocks for lip motion capture shared the same configuration as au-
dio LSTM blocks. GS fusion’s audio and video input dimensions
were 512, and the first fully connected layer projected concatenated
features from R1024 to R512. We set the optimizer as AdamW [30]
and the learning rate scheduler to be a step decay scheduler with a
gradual warm-up mechanism. The peak learning rate was 0.001.

4.4. Baseline Systems

We employed the following baseline models for comparison with
our proposed models:
AO-E3Net: An audio-only E3Net model. It is an unconditional
model and not capable of removing the interfering speaker.
AV-DCATTUNET: A variant of pDCATTUNET, introduced in [2],
in which the speaker embedding was replaced by the video frame
embedding extracted by a pre-trained face recognition model (Shuf-
fleNetV2 0.5x). The face recognition model takes the whole face of
each video frame as the input. We set the number of encoder/decoder
blocks to 6 and the number of bottleneck blocks to 4. The STFT win-
dow and hop sizes were 512 and 256 samples, respectively.
Naive AV-E3Net: The AV-E3Net without dense connection and
multi-stage GS fusion. It combined the video encoder (Shuf-
fleNetV2 0.5x) with E3Net and employed a single concatenation
block to merge late video features from the video encoder with
intermediate audio features before the first audio LSTM block. A
single concatenation block comprises a concatenation layer, a pro-
jection block, a dense connection or a skip connection, and a layer
normalization. Particularly, only skip connection was used in Naive
AV-E3Net’s LSTM block and single concatenation block.

4.5. Results

Table 1 shows the computational complexity of different model con-
figurations and the corresponding perceptual quality and intelligibil-
ity results on TS1 and TS2 test sets. According to the results, AO-
E3Net performs poorly on TS1 since it cannot remove the interfering

speaker. In contrast, AV-DCATTUNET provides much better results
on both TS1 and TS2 than the AO-E3Net in terms of speech and
transcription quality. Naive AV-E3Net without video LSTM yields
worse WER results than AV-DCATTUNET but provides better SDR.
Adding a single video LSTM to the Naive AV-E3Net yields similar
results; However, increasing it to 4 LSTM blocks degrades speech
and transcription quality, indicating training difficulty. By adding
the dense connection to AV-E3Net, we observe significant speech
and transcription quality improvement with a negligible computa-
tional cost increase. With the dense connection, adding more video
LSTM layers improves the transcription quality while yielding sim-
ilar speech quality. AV-E3Net models with dense connection out-
perform AV-DCATTUNET on TS1 and achieve comparable perfor-
mance on TS2 with a much lower computational cost. Next, the re-
sults show that AV-E3Net with multi-stage training further improves
speech and transcription quality. The best AV-E3Net results are ob-
tained using multi-stage fusion with the GS fusion. The GS fusion
helps with substantially better performance on TS2, which is for the
less noisy scenario. The computational cost increase for multi-stage
GS fusion is minor.

It should be noted that the AV-DCATTUNET model cannot
be used for real-time processing because of the model’s depen-
dency on a pre-trained video encoder. Although the face recognition
model employs the efficient ShuffleNetV2, it takes the whole face
rather than the mouth ROI as the input. Therefore, the RTF on
the video encoder reaches 1.442. However, since AV-E3Net uses
only mouth ROI as the input, it can work in real time. These re-
sults suggest that AV-E3Net performs better than the bigger model
(AV-DCATTUNET) with a lower computational cost.

5. CONCLUSIONS

We proposed a low-latency real-time audio-visual end-to-end speech
enhancement model AV-E3Net. We employed a dense connection
module, which significantly improved both perceptual quality and
intelligibility with minimal increase in computational costs. Further-
more, we proposed a novel multi-stage gating-and-summation (GS)
fusion module that dynamically and effectively fuses speech and vi-
sion modalities. We showed that our proposed model performed
much better than the baseline systems. Furthermore, the ablation
study showed the impact of adding dense connection and multi-stage
GS modules. The computational cost of our system is much lower
than the baseline AV-SE system and can work in real time on the
CPU. Therefore, the proposed AV-E3Net has excellent potential in
real-world video communication applications as a low-latency and
real-time model.1

1Samples available at https://github.com/zzrdwj/AVSE

https://github.com/zzrdwj/AVSE
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